Tài liệu gồm 779 trang được sưu tầm và biên soạn bởi thầy giáo Th.S Nguyễn Chín Em, tuyển tập các câu hỏi và bài tập trắc nghiệm chuyên đề ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có đáp án và lời giải chi tiết trong các đề thi thử THPT Quốc gia môn Toán những năm gần đây; giúp các em học sinh khối 12 học tốt chương trình Giải tích 12 chương 1 (Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số) và ôn thi THPT Quốc gia môn Toán.
Nội dung tài liệu được chia thành 5 phần:
+ Phần 1. Mức độ nhận biết (Trang 3).
+ Phần 2. Mức độ thông hiểu (Trang 66).
+ Phần 3. Mức độ vận dụng thấp (Trang 174).
+ Phần 4. Mức độ vận dụng cao (Trang 250).
+ Phần 5. Các bài toán vận dụng thực tế (Trang 292).
[ads]
Trích dẫn tài liệu ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số trong đề thi thử THPTQG môn Toán:
+ Cho hàm số y = f(x) có đạo hàm liên tục trên khoảng (a; b) chứa x0. Mệnh đề nào sau đây là mệnh đề đúng?
A. Nếu f0(x0) = 0 thì hàm số đạt cực trị tại x = x0. B. Nếu hàm số đạt cực tiểu tại x = x0 thì f00 (x0) < 0.
C. Nếu hàm số đạt cực trị tại x = x0 thì f0(x0) = 0. D. Hàm số đạt cực trị tại x = x0 khi và chỉ khi f0(x0) = 0.
+ Một cửa hàng cà phê sắp khai trương đang nghiên cứu thị trường để định giá bán cho mỗi cốc cà phê. Sau khi nghiên cứu, người quản lý thấy rằng nếu bán với giá 20 000 đồng một cốc thì mỗi tháng trung bình sẽ bán được 2 000 cốc, còn từ mức giá 20 000 đồng mà cứ tăng giá thêm 1 000 đồng thì sẽ bán ít đi 100 cốc. Biết chi phí nguyên vật liệu để pha một cốc cà phê không thay đổi là 18 000 đồng. Hỏi cửa hàng phải bán mỗi cốc cà phê với giá bao nhiêu để đạt lợi nhuận lớn nhất?
+ Cho hàm số y = (x + 1)/(x − 1). Gọi M, N là hai điểm thuộc đồ thị của hàm số sao cho hai tiếp tuyến của đồ thị hàm số tại M và N song song với nhau. Khẳng định nào sau đây sai?
A. Hai điểm M và N đối xứng với nhau qua gốc tọa độ. B. Đường tiệm cận ngang của đồ thị hàm số đi qua trung điểm của đoạn thẳng MN.
C. Hai điểm M và N đối xứng nhau với qua giao điểm của hai đường tiệm cận. D. Đường tiệm cận đứng của đồ thị hàm số đi qua trung điểm của đoạn thẳng MN.
+ Gọi d là tiếp tuyến của đồ thị (C) của hàm số y = x3 + 3×2 + 1 tại điểm A(1;5) và B là giao điểm thứ hai của d và (C). Khi đó diện tích S của tam giác OAB bằng?
+ Cho hàm số y = x4 − 2(m2 + 1)x2 + m4 có đồ thị là (C). Gọi A, B, C là ba điểm cực trị của (C), S1 và S2 lần lượt là phần diện tích của tam giác ABC phía trên và phía dưới trục hoành. Có bao nhiêu giá trị thực của tham số m sao cho S1/S2 = 1/3?
Bài toán ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số trong đề thi thử thptqg môn toán là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số trong đề thi thử thptqg môn toán thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số trong đề thi thử thptqg môn toán, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số trong đề thi thử thptqg môn toán, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số trong đề thi thử thptqg môn toán là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số trong đề thi thử thptqg môn toán.