Logo Header
  1. Môn Toán
  2. tổng và hiệu hai vectơ

tổng và hiệu hai vectơ

Bài viết trình bày các lý thuyết cần nắm vững và phương pháp giải một số dạng toán tổng và hiệu hai vectơ.

A. TÓM TẮT LÝ THUYẾT

1. Tổng hai vectơ

a) Định nghĩa: Cho hai vectơ \(\vec a\), \(\vec b.\) Từ điểm \(A\) tùy ý vẽ \(\overrightarrow {AB} = \overrightarrow a \) rồi từ \(B\) vẽ \(\overrightarrow {BC} = \overrightarrow b \), khi đó vectơ \(\overrightarrow {AC} \) được gọi là tổng của hai vectơ \(\overrightarrow a \), \(\overrightarrow b .\)

Kí hiệu \(\overrightarrow {AC} = \overrightarrow a + \overrightarrow b .\)

tổng và hiệu hai vectơ

b) Tính chất

+ Giao hoán: \(\vec a + \vec b = \vec b + \vec a.\)

+ Kết hợp: \((\vec a + \vec b) + \vec c = \vec a + (\vec b + \vec c).\)

+ Tính chất vectơ-không: \(\vec a + \vec 0 = \vec a\), \(\forall \vec a.\)

2. Hiệu hai vectơ

a) Vectơ đối của một vectơ

Vectơ đối của vectơ \(\overrightarrow a \) là vectơ ngược hướng và cùng độ dài với vectơ \(\overrightarrow a .\)

Kí hiệu \( – \vec a.\)

Như vậy \(\vec a + ( – \vec a) = \vec 0\), \(\forall \vec a\) và \(\overrightarrow {AB} = – \overrightarrow {BA} .\)

b) Định nghĩa hiệu hai vectơ

Hiệu của hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) là tổng của vectơ \(\overrightarrow a \) và vectơ đối của vectơ \(\overrightarrow b .\) Kí hiệu là \(\vec a – \vec b = \vec a + ( – \vec b).\)

3. Các quy tắc

Quy tắc ba điểm: Cho \(A\), \(B\), \(C\) tùy ý, ta có: \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} .\)

Quy tắc hình bình hành: Nếu \(ABCD\) là hình bình hành thì \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} .\)

Quy tắc về hiệu vectơ: Cho \(O\), \(A\), \(B\) tùy ý ta có: \(\overrightarrow {OB} – \overrightarrow {OA} = \overrightarrow {AB} .\)

Chú ý: Ta có thể mở rộng quy tắc ba điểm cho \(n\) điểm \({A_1}\), \({A_2}\), …, \({A_n}\):

\(\overrightarrow {{A_1}{A_2}} + \overrightarrow {{A_2}{A_3}} + \ldots + \overrightarrow {{A_{n – 1}}{A_n}} = \overrightarrow {{A_1}{A_n}} .\)

B. CÁC DẠNG TOÁN VÀ PHƯƠNG PHÁP GIẢI

DẠNG TOÁN 1: XÁC ĐỊNH ĐỘ DÀI TỔNG, HIỆU CỦA CÁC VECTƠ.

1. PHƯƠNG PHÁP GIẢI

Để xác định độ dài tổng và hiệu của các vectơ:

+ Trước tiên sử dụng định nghĩa về tổng, hiệu hai vectơ và các tính chất, quy tắc để xác định phép toán vectơ đó.

+ Dựa vào tính chất của hình, sử dụng định lí Pitago, hệ thức lượng trong tam giác vuông để xác định độ dài vectơ đó.

2. CÁC VÍ DỤ

Ví dụ 1: Cho tam giác \(ABC\) vuông tại \(A\) có \(\widehat {ABC} = {30^0}\) và \(BC = a\sqrt 5 .\) Tính độ dài của các vectơ \(\overrightarrow {AB} + \overrightarrow {BC} \), \(\overrightarrow {AC} – \overrightarrow {BC} \) và \(\overrightarrow {AB} + \overrightarrow {AC} .\)

tổng và hiệu hai vectơ

Theo quy tắc ba điểm ta có:

\(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} .\)

Mà \(\sin \widehat {ABC} = \frac{{AC}}{{BC}}.\)

\( \Rightarrow AC = BC.\sin \widehat {ABC}\) \( = a\sqrt 5 .\sin {30^0} = \frac{{a\sqrt 5 }}{2}.\)

Do đó \(|\overrightarrow {AB} + \overrightarrow {BC} | = |\overrightarrow {AC} |\) \( = AC = \frac{{a\sqrt 5 }}{2}.\)

\(\overrightarrow {AC} – \overrightarrow {BC} = \overrightarrow {AC} + \overrightarrow {CB} = \overrightarrow {AB} .\)

Ta có \(A{C^2} + A{B^2} = B{C^2}\) \( \Rightarrow AB = \sqrt {B{C^2} – A{C^2}} \) \( = \sqrt {5{a^2} – \frac{{5{a^2}}}{4}} = \frac{{a\sqrt {15} }}{2}.\)

Vì vậy \(|\overrightarrow {AC} – \overrightarrow {BC} | = |\overrightarrow {AB} |\) \( = AB = \frac{{a\sqrt {15} }}{2}.\)

Gọi \(D\) là điểm sao cho tứ giác \(ABDC\) là hình bình hành.

Khi đó theo quy tắc hình bình hành ta có \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AD} .\)

Vì tam giác \(ABC\) vuông ở \(A\) nên tứ giác \(ABDC\) là hình chữ nhật, suy ra \(AD = BC = a\sqrt 5 .\)

Vậy \(|\overrightarrow {AB} + \overrightarrow {AC} | = |\overrightarrow {AD} | = AD = a\sqrt 5 .\)

Ví dụ 2: Cho hình vuông \(ABCD\) có tâm là \(O\) và cạnh \(a.\) \(M\) là một điểm bất kỳ.

a) Tính \(|\overrightarrow {AB} + \overrightarrow {AD} |\), \(|\overrightarrow {OA} – \overrightarrow {BO} |\), \(|\overrightarrow {CD} – \overrightarrow {DA} |.\)

b) Chứng minh rằng \(\overrightarrow u = \overrightarrow {MA} + \overrightarrow {MB} – \overrightarrow {MC} – \overrightarrow {MD} \) không phụ thuộc vị trí điểm \(M.\) Tính độ dài vectơ \(\overrightarrow u .\)

tổng và hiệu hai vectơ

a) Theo quy tắc hình bình hành ta có \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} .\)

Suy ra \(|\overrightarrow {AB} + \overrightarrow {AD} | = |\overrightarrow {AC} | = AC.\)

Áp dụng định lí Pitago ta có:

\(A{C^2} = A{B^2} + B{C^2} = 2{a^2}\) \( \Rightarrow AC = \sqrt 2 a.\)

Vậy \(|\overrightarrow {AB} + \overrightarrow {AD} | = a\sqrt 2 .\)

Vì \(O\) là tâm của hình vuông nên \(\overrightarrow {OA} = \overrightarrow {CO} \), suy ra \(\overrightarrow {OA} – \overrightarrow {CB} = \overrightarrow {CO} – \overrightarrow {BO} = \overrightarrow {CB} .\)

Vậy \(|\overrightarrow {OA} – \overrightarrow {BO} | = |\overrightarrow {CB} | = a.\)

Do \(ABCD\) là hình vuông nên \(\overrightarrow {CD} = \overrightarrow {BA} \), suy ra \(\overrightarrow {CD} – \overrightarrow {DA} = \overrightarrow {BA} + \overrightarrow {AD} = \overrightarrow {BD} .\)

Mà \(|\overrightarrow {BD} | = BD = \sqrt {A{B^2} + A{D^2}} = a\sqrt 2 \) suy ra \(|\overrightarrow {CD} – \overrightarrow {DA} | = a\sqrt 2 .\)

b) Theo quy tắc phép trừ ta có: \(\overrightarrow u = (\overrightarrow {MA} – \overrightarrow {MC} ) + (\overrightarrow {MB} – \overrightarrow {MD} )\) \( = \overrightarrow {CA} + \overrightarrow {DB} .\)

Suy ra \(\overrightarrow u \) không phụ thuộc vị trí điểm \(M.\)

Qua \(A\) kẻ đường thẳng song song với \(DB\) cắt \(BC\) tại \(C’.\)

Khi đó tứ giác \(ADBC’\) là hình bình hành (vì có cặp cạnh đối song song) suy ra \(\overrightarrow {DB} = \overrightarrow {AC’} .\)

Do đó \(\overrightarrow u = \overrightarrow {CA} + \overrightarrow {AC’} = \overrightarrow {CC’} .\)

Vì vậy \(|\vec u| = \left| {\overrightarrow {CC’} } \right| = BC + BC’\) \( = a + a = 2a.\)

3. BÀI TẬP LUYỆN TẬP

Bài 1
: Cho tam giác \(ABC\) đều cạnh \(a.\) Tính độ dài của các vectơ sau \(\overrightarrow {AB} – \overrightarrow {AC} \), \(\overrightarrow {AB} + \overrightarrow {AC} .\)

tổng và hiệu hai vectơ

Theo quy tắc phép trừ ta có:

\(\overrightarrow {AB} – \overrightarrow {AC} = \overrightarrow {CB} \) \( \Rightarrow |\overrightarrow {AB} – \overrightarrow {AC} | = BC = a.\)

Gọi \(A’\) là đỉnh của hình bình hành \(ABA’C\) và \(O\) là tâm hình bình hành đó.

Khi đó ta có \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AA’} .\)

Ta có \(AO = \sqrt {A{B^2} – O{B^2}} \) \( = \sqrt {{a^2} – \frac{{{a^2}}}{4}} = \frac{{a\sqrt 3 }}{2}.\)

Suy ra \(|\overrightarrow {AB} + \overrightarrow {AC} | = AA’ = 2AO = a\sqrt 3 .\)

Bài 2: Cho hình vuông \(ABCD\) có tâm là \(O\) và cạnh \(a.\) \(M\) là một điểm bất kỳ.

a) Tính \(|\overrightarrow {AB} + \overrightarrow {OD} |\), \(|\overrightarrow {AB} – \overrightarrow {OC} + \overrightarrow {OD} |.\)

b) Tính độ dài vectơ \(\overrightarrow {MA} – \overrightarrow {MB} – \overrightarrow {MC} + \overrightarrow {MD} .\)

tổng và hiệu hai vectơ

a) Ta có: \(\overrightarrow {OD} = \overrightarrow {BO} \) \( \Rightarrow \overrightarrow {AB} + \overrightarrow {OD} = \overrightarrow {AB} + \overrightarrow {BO} = \overrightarrow {AO} .\)

\(|\overrightarrow {AB} + \overrightarrow {OD} | = AO = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}.\)

Ta có \(\overrightarrow {OC} = \overrightarrow {AO} \) suy ra:

\(\overrightarrow {AB} – \overrightarrow {OC} + \overrightarrow {OD} \) \( = \overrightarrow {AB} – \overrightarrow {AO} + \overrightarrow {OD} \) \( = \overrightarrow {OB} + \overrightarrow {OD} = \vec 0.\)

\( \Rightarrow |\overrightarrow {AB} – \overrightarrow {OC} + \overrightarrow {OD} | = 0.\)

b) Áp dụng quy tắc phép trừ ta có:

\(\overrightarrow {MA} – \overrightarrow {MB} – \overrightarrow {MC} + \overrightarrow {MD} \) \( = (\overrightarrow {MA} – \overrightarrow {MB} ) – (\overrightarrow {MC} – \overrightarrow {MD} )\) \( = \overrightarrow {BA} – \overrightarrow {DC} .\)

Lấy \(B’\) là điểm đối xứng của \(B\) qua \(A.\)

Khi đó \( – \overrightarrow {DC} = \overrightarrow {AB’} \) \( \Rightarrow \overrightarrow {BA} – \overrightarrow {DC} \) \( = \overrightarrow {BA} + \overrightarrow {AB’} = \overrightarrow {BB’} .\)

Suy ra \(|\overrightarrow {MA} – \overrightarrow {MB} – \overrightarrow {MC} + \overrightarrow {MD} |\) \( = |\overrightarrow {BB’} |\) \( = BB’ = 2a.\)

Bài 3: Cho hình thoi \(ABCD\) cạnh \(a\) và \(\widehat {BCD} = {60^0}.\) Gọi \(O\) là tâm hình thoi. Tính \(|\overrightarrow {AB} + \overrightarrow {AD} |\), \(|\overrightarrow {OB} – \overrightarrow {DC} |.\)

Ta có:

\(|\overrightarrow {AB} + \overrightarrow {AD} | = |\overrightarrow {AC} |\) \( = 2a\cos {30^0} = a\sqrt 3 .\)

\(|\overrightarrow {OB} – \overrightarrow {DC} | = |\overrightarrow {CO} |\) \( = a\cos {30^0} = \frac{{a\sqrt 3 }}{2}.\)

Bài 4: Cho bốn điểm \(A\), \(B\), \(C\), \(O\) phân biệt có độ dài ba vectơ \(\overrightarrow {OA} \), \(\overrightarrow {OB} \), \(\overrightarrow {OC} \) cùng bằng \(a\) và \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \vec 0.\)

a) Tính các góc \(\widehat {AOB}\), \(\widehat {BOC}\), \(\widehat {COA}.\)

b) Tính \(|\overrightarrow {OB} + \overrightarrow {AC} – \overrightarrow {OA} |.\)

a) Từ giả thiết suy ra ba điểm \(A\), \(B\), \(C\) tạo thành tam giác đều nhận \(O\) làm trọng tâm, do đó: \(\widehat {AOB} = \widehat {BOC} = \widehat {COA} = {120^0}.\)

b) Gọi \(I\) là trung điểm \(BC.\)

Theo câu a ta có \(\Delta ABC\) đều nên \(AI = \frac{{\sqrt 3 }}{2}a.\)

\(|\overrightarrow {OB} + \overrightarrow {AC} – \overrightarrow {OA} | = a\sqrt 3 .\)

Bài 5: Cho góc \(\widehat {Oxy}\). Trên \(Ox\), \(Oy\) lấy hai điểm \(A\), \(B.\) Tìm điều kiện của \(A\), \(B\) sao cho \(\overrightarrow {OA} + \overrightarrow {OB} \) nằm trên phân giác của góc \(\widehat {Oxy}.\)

Dựng hình bình hành \(OACB.\)

Khi đó: \(\overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow {OC} .\)

Vậy \(\overrightarrow {OC} \) nằm trên phân giác góc \(xOy \Leftrightarrow OACB\) là hình thoi \( \Leftrightarrow OA = OB.\)

DẠNG TOÁN 2: CHỨNG MINH ĐẲNG THỨC VECTƠ.

1. PHƯƠNG PHÁP GIẢI

Để chứng minh đẳng thức vectơ ta có các cách biến đổi:

+ Vế này thành vế kia.

+ Biến đổi tương đương.

+ Biến đổi hai vế cùng bằng một đại lượng trung gian.

Trong quá trình biến đổi ta cần sử dụng linh hoạt ba quy tắc tính vectơ.

Lưu ý: Khi biến đổi cần phải “hướng đích”, chẳng hạn biến đổi vế phải, ta cần xem vế trái có đại lượng nào để từ đó liên tưởng đến kiến thức đã có để làm sao xuất hiện các đại lượng ở vế trái. Và ta thường biến đổi vế phức tạp về vế đơn giản hơn.

2. CÁC VÍ DỤ

Ví dụ 1: Cho năm điểm \(A\), \(B\), \(C\), \(D\), \(E.\) Chứng minh rằng:

a) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} = \overrightarrow {CB} + \overrightarrow {ED} .\)

b) \(\overrightarrow {AC} + \overrightarrow {CD} – \overrightarrow {EC} = \overrightarrow {AE} – \overrightarrow {DB} + \overrightarrow {CB} .\)

a) Biến đổi vế trái, ta có:

\(VT = (\overrightarrow {AC} + \overrightarrow {CB} ) + \overrightarrow {CD} + (\overrightarrow {ED} + \overrightarrow {DA} )\) \( = (\overrightarrow {CB} + \overrightarrow {ED} ) + (\overrightarrow {AC} + \overrightarrow {CD} ) + \overrightarrow {DA} \) \( = (\overrightarrow {CB} + \overrightarrow {ED} ) + \overrightarrow {AD} + \overrightarrow {DA} \) \( = \overrightarrow {CB} + \overrightarrow {ED} = VP.\)

b) Đẳng thức tương đương với:

\((\overrightarrow {AC} – \overrightarrow {AE} ) + (\overrightarrow {CD} – \overrightarrow {CB} )\) \( – \overrightarrow {EC} + \overrightarrow {DB} = \overrightarrow 0 \) \( \Leftrightarrow \overrightarrow {EC} + \overrightarrow {BD} – \overrightarrow {EC} + \overrightarrow {DB} = \vec 0\) \(\overrightarrow {BD} + \overrightarrow {DB} = \vec 0\) (đúng).

Suy ra điều phải chứng minh.

Ví dụ 2: Cho hình bình hành \(ABCD\) tâm \(O.\) \(M\) là một điểm bất kì trong mặt phẳng. Chứng minh rằng:

a) \(\overrightarrow {BA} + \overrightarrow {DA} + \overrightarrow {AC} = \vec 0.\)

b) \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \vec 0.\)

c) \(\overrightarrow {MA} + \overrightarrow {MC} = \overrightarrow {MB} + \overrightarrow {MD} .\)

tổng và hiệu hai vectơ

a) Ta có: \(\overrightarrow {BA} + \overrightarrow {DA} + \overrightarrow {AC} \) \( = – \overrightarrow {AB} – \overrightarrow {AD} + \overrightarrow {AC} \) \( = – (\overrightarrow {AB} + \overrightarrow {AD} ) + \overrightarrow {AC} .\)

Theo quy tắc hình bình hành ta có: \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} .\)

Suy ra: \(\overrightarrow {BA} + \overrightarrow {DA} + \overrightarrow {AC} \) \( = – \overrightarrow {AC} + \overrightarrow {AC} = \vec 0.\)

b) Vì \(ABCD\) là hình bình hành nên ta có:

\(\overrightarrow {OA} = \overrightarrow {CO} \) \( \Rightarrow \overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow {OA} + \overrightarrow {AO} = \vec 0.\)

Tương tự: \(\overrightarrow {OB} + \overrightarrow {OD} = \vec 0\) \( \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \vec 0.\)

c)

Cách 1: Vì \(ABCD\) là hình bình hành nên \(\overrightarrow {AB} = \overrightarrow {DC} \) \( \Rightarrow \overrightarrow {BA} + \overrightarrow {DC} = \overrightarrow {BA} + \overrightarrow {AB} = \vec 0.\)

\( \Rightarrow \overrightarrow {MA} + \overrightarrow {MC} = \overrightarrow {MB} + \overrightarrow {BA} + \overrightarrow {MD} + \overrightarrow {DC} \) \( = \overrightarrow {MB} + \overrightarrow {MD} + \overrightarrow {BA} + \overrightarrow {DC} \) \( = \overrightarrow {MB} + \overrightarrow {MD} .\)

Cách 2: Đẳng thức tương đương với:

\(\overrightarrow {MA} – \overrightarrow {MB} = \overrightarrow {MD} – \overrightarrow {MC} \) \( \Leftrightarrow \overrightarrow {BA} = \overrightarrow {CD} \) (đúng do \(ABCD\) là hình bình hành).

Ví dụ 3: Cho tam giác \(ABC.\) Gọi \(M\), \(N\), \(P\) lần lượt là trung điểm của \(BC\), \(CA\), \(AB.\) Chứng minh rằng:

a) \(\overrightarrow {BM} + \overrightarrow {CN} + \overrightarrow {AP} = \overrightarrow 0 .\)

b) \(\overrightarrow {AP} + \overrightarrow {AN} – \overrightarrow {AC} + \overrightarrow {BM} = \vec 0.\)

c) \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OM} + \overrightarrow {ON} + \overrightarrow {OP} \) với \(O\) là điểm bất kì.

tổng và hiệu hai vectơ

a) Vì \(PN\), \(MN\) là đường trung bình của tam giác \(ABC\) nên \(PN // BM\), \(MN // BP\) suy ra tứ giác \(BMNP\) là hình bình hành.

\( \Rightarrow \overrightarrow {BM} = \overrightarrow {PN} .\)

\(N\) là trung điểm của \(AC\) \( \Rightarrow \overrightarrow {CN} = \overrightarrow {NA} .\)

Do đó theo quy tắc ba điểm ta có:

\(\overrightarrow {BM} + \overrightarrow {CN} + \overrightarrow {AP} \) \( = (\overrightarrow {PN} + \overrightarrow {NA} ) + \overrightarrow {AP} \) \( = \overrightarrow {PA} + \overrightarrow {AP} = \vec 0.\)

b) Vì tứ giác \(APMN\) là hình bình hành nên theo quy tắc hình bình hành, ta có: \(\overrightarrow {AP} + \overrightarrow {AN} = \overrightarrow {AM} .\)

Kết hợp với quy tắc phép trừ \( \Rightarrow \overrightarrow {AP} + \overrightarrow {AN} – \overrightarrow {AC} + \overrightarrow {BM} \) \( = \overrightarrow {AM} – \overrightarrow {AC} + \overrightarrow {BM} \) \( = \overrightarrow {CM} + \overrightarrow {BM} .\)

Mà \(\overrightarrow {CM} + \overrightarrow {BM} = \vec 0\) do \(M\) là trung điểm của \(BC.\)

Vậy \(\overrightarrow {AP} + \overrightarrow {AN} – \overrightarrow {AC} + \overrightarrow {BM} = \vec 0.\)

c) Theo quy tắc ba điểm, ta có:

\(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} \) \( = (\overrightarrow {OP} + \overrightarrow {PA} )\) \( + (\overrightarrow {OM} + \overrightarrow {MB} )\) \( + (\overrightarrow {ON} + \overrightarrow {NC} )\) \( = (\overrightarrow {OM} + \overrightarrow {ON} + \overrightarrow {OP} )\) \( + \overrightarrow {PA} + \overrightarrow {MB} + \overrightarrow {NC} \) \( = (\overrightarrow {OM} + \overrightarrow {ON} + \overrightarrow {OP} )\) \( – (\overrightarrow {BM} + \overrightarrow {CN} + \overrightarrow {AP} ).\)

Theo câu a ta có \(\overrightarrow {BM} + \overrightarrow {CN} + \overrightarrow {AP} = \overrightarrow 0 \), suy ra \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OM} + \overrightarrow {ON} + \overrightarrow {OP} .\)

3. BÀI TẬP LUYỆN TẬP

Bài 1
: Cho bốn điểm \(A\), \(B\), \(C\), \(D.\) Chứng minh rằng:

a) \(\overrightarrow {DA} – \overrightarrow {CA} = \overrightarrow {DB} – \overrightarrow {CB} .\)

b) \(\overrightarrow {AC} + \overrightarrow {DA} + \overrightarrow {BD} = \overrightarrow {AD} – \overrightarrow {CD} + \overrightarrow {BA} .\)

a) Áp dụng quy tắc phép trừ, ta có:

\(\overrightarrow {DA} – \overrightarrow {CA} = \overrightarrow {DB} – \overrightarrow {CB} \) \( \Leftrightarrow \overrightarrow {DA} – \overrightarrow {DB} = \overrightarrow {CA} – \overrightarrow {CB} \) \( \Leftrightarrow \overrightarrow {BA} = \overrightarrow {BA} \) (đúng).

b) Áp dụng quy tắc ba điểm, ta có:

\(\overrightarrow {AC} + \overrightarrow {DA} + \overrightarrow {BD} \) \( = \overrightarrow {AD} – \overrightarrow {CD} + \overrightarrow {BA} \) \( \Leftrightarrow (\overrightarrow {DA} + \overrightarrow {AC} ) + \overrightarrow {BD} \) \( = (\overrightarrow {BA} + \overrightarrow {AD} ) – \overrightarrow {CD} \) \( \Leftrightarrow \overrightarrow {DC} + \overrightarrow {BD} = \overrightarrow {BD} – \overrightarrow {CD} \) (đúng).

Bài 2: Cho các điểm \(A\), \(B\), \(C\), \(D\), \(E\), \(F.\) Chứng minh rằng \(\overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} .\)

Cách 1: Đẳng thức cần chứng minh tương đương với:

\((\overrightarrow {AD} – \overrightarrow {AE} ) + (\overrightarrow {BE} – \overrightarrow {BF} )\) \( + (\overrightarrow {CF} – \overrightarrow {CD} ) = \vec 0.\)

\( \Leftrightarrow \overrightarrow {ED} + \overrightarrow {FE} + \overrightarrow {DF} = \vec 0\) \( \Leftrightarrow \overrightarrow {EF} + \overrightarrow {FE} = \vec 0\) (đúng).

Cách 2: \(VT = \overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} \) \( = (\overrightarrow {AE} + \overrightarrow {ED} ) + (\overrightarrow {BF} + \overrightarrow {FE} ) + (\overrightarrow {CD} + \overrightarrow {DF} )\) \( = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} + \overrightarrow {ED} + \overrightarrow {FE} + \overrightarrow {DF} \) \( = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} = VP.\)

Bài 3: Cho hình bình hành \(ABCD\) tâm \(O.\) \(M\) là một điểm bất kì trong mặt phẳng. Chứng minh rằng:

a) \(\overrightarrow {AB} + \overrightarrow {OD} + \overrightarrow {OC} = \overrightarrow {AC} .\)

b) \(\overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {OB} = \overrightarrow {OD} .\)

c) \(\overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {OB} = \overrightarrow {MO} – \overrightarrow {MB} .\)

tổng và hiệu hai vectơ

a) Ta có \(\overrightarrow {OD} = \overrightarrow {BO} \) do đó:

\(\overrightarrow {AB} + \overrightarrow {OD} + \overrightarrow {OC} \) \( = \overrightarrow {AB} + \overrightarrow {BO} + \overrightarrow {OC} \) \( = \overrightarrow {AO} + \overrightarrow {OC} = \overrightarrow {AC} .\)

b) Theo quy tắc hình bình hành, ta có:

\(\overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {OB} \) \( = \overrightarrow {BD} + \overrightarrow {OB} \) \( = \overrightarrow {OB} + \overrightarrow {BD} = \overrightarrow {OD} .\)

c) Theo câu b ta có: \(\overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {OB} = \overrightarrow {OD} .\)

Theo quy tắc trừ ta có: \(\overrightarrow {MO} – \overrightarrow {MB} = \overrightarrow {BO} .\)

Mà \(\overrightarrow {OD} = \overrightarrow {BO} \) suy ra \(\overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {OB} = \overrightarrow {MO} – \overrightarrow {MB} .\)

Bài 4: Cho tam giác \(ABC.\) Gọi \(M\), \(N\), \(P\) lần lượt là trung điểm của \(BC\), \(CA\), \(AB.\) Chứng minh rằng:

a) \(\overrightarrow {NA} + \overrightarrow {PB} + \overrightarrow {MC} = \vec 0.\)

b) \(\overrightarrow {MC} + \overrightarrow {BP} + \overrightarrow {NC} = \overrightarrow {BC} .\)

tổng và hiệu hai vectơ

a) Vì \(\overrightarrow {PB} = \overrightarrow {AP} \), \(\overrightarrow {MC} = \overrightarrow {PN} \) nên: \(\overrightarrow {NA} + \overrightarrow {PB} + \overrightarrow {MC} \) \( = \overrightarrow {NA} + \overrightarrow {AP} + \overrightarrow {PN} \) \( = \overrightarrow {NP} + \overrightarrow {PN} = \vec 0.\)

b) Vì \(\overrightarrow {MC} = \overrightarrow {BM} \) và kết hợp với quy tắc ba điểm, quy tắc hình bình hành, ta có:

\(\overrightarrow {MC} + \overrightarrow {BP} + \overrightarrow {NC} \) \( = \overrightarrow {BM} + \overrightarrow {BP} + \overrightarrow {NC} \) \( = \overrightarrow {BN} + \overrightarrow {NC} = \overrightarrow {BC} .\)

Bài 5: Cho hai hình bình hành \(ABCD\) và \(AB’C’D’\) có chung đỉnh \(A.\) Chứng minh rằng: \(\overrightarrow {B’B} + \overrightarrow {CC’} + \overrightarrow {D’D} = \vec 0.\)

Theo quy tắc trừ và quy tắc hình bình hành, ta có:

\(\overrightarrow {B’B} + \overrightarrow {CC’} + \overrightarrow {D’D} \) \( = \left( {\overrightarrow {AB} – \overrightarrow {AB’} } \right) + \left( {\overrightarrow {AC’} – \overrightarrow {AC} } \right) + \left( {\overrightarrow {AD} – \overrightarrow {AD’} } \right)\) \( = \left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) – \overrightarrow {AC} \) \( – \left( {\overrightarrow {AB’} + \overrightarrow {AD’} } \right) + \overrightarrow {AC’} = \overrightarrow 0 .\)

Bài 6: Cho ngũ giác đều \(ABCDE\) tâm \(O.\) Chứng minh rằng: \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OE} + \overrightarrow {OF} = \vec 0.\)

Đặt \(\overrightarrow u = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OE} + \overrightarrow {OF} .\)

Vì ngũ giác đều nên vectơ \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OE} \) cùng phương với \(\overrightarrow {OF} \) nên \(\overrightarrow u \) cùng phương với \(\overrightarrow {OF} .\)

Tương tự \(\overrightarrow u \) cùng phương với \(\overrightarrow {OE} .\)

Suy ra \(\overrightarrow u = \vec 0.\)

Bài 7: Cho hình bình hành \(ABCD.\) Dựng \(\overrightarrow {AM} = \overrightarrow {BA} \), \(\overrightarrow {MN} = \overrightarrow {DA} \), \(\overrightarrow {NP} = \overrightarrow {DC} \), \(\overrightarrow {PQ} = \overrightarrow {BC} .\)

Chứng minh rằng: \(\overrightarrow {AQ} = \overrightarrow 0 .\)

Theo quy tắc ba điểm, ta có: \(\overrightarrow {AQ} = \overrightarrow {AM} + \overrightarrow {MN} + \overrightarrow {NP} + \overrightarrow {PQ} \) \( = \overrightarrow {BA} + \overrightarrow {DA} + \overrightarrow {DC} + \overrightarrow {BC} .\)

Mặt khác \(\overrightarrow {BA} + \overrightarrow {BC} = \overrightarrow {BD} \), \(\overrightarrow {DA} + \overrightarrow {DC} = \overrightarrow {DB} .\)

Suy ra \(\overrightarrow {AQ} = \overrightarrow {BD} + \overrightarrow {DB} = \vec 0.\)

Giải bài toán tổng và hiệu hai vectơ: Phương Pháp, Mẹo Học Hiệu Quả và Ví Dụ Chi Tiết

Bài toán tổng và hiệu hai vectơ là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.

1. Tầm Quan Trọng Của Việc Giải Bài Toán tổng và hiệu hai vectơ

Bài toán tổng và hiệu hai vectơ thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.

  • Rèn luyện tư duy logic: Việc giải các bài toán thuộc dạng này giúp bạn phát triển khả năng tư duy phân tích, nhận biết mối quan hệ giữa các yếu tố trong bài toán.
  • Củng cố kiến thức: Qua quá trình luyện tập, bạn sẽ hiểu sâu hơn về các công thức, định lý, và phương pháp áp dụng.
  • Chuẩn bị cho kỳ thi: Việc làm quen với dạng bài này sẽ giúp bạn tự tin hơn khi bước vào phòng thi.

2. Phương Pháp Giải Bài Toán tổng và hiệu hai vectơ

Để giải hiệu quả bài toán tổng và hiệu hai vectơ, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:

Bước 1: Hiểu Đề Bài

  • Đọc kỹ đề bài để nắm bắt yêu cầu chính xác.
  • Xác định các yếu tố đã cho và cần tìm.
  • Phân tích mối liên hệ giữa các yếu tố.

Bước 2: Lựa Chọn Phương Pháp Giải

Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:

  • Phương pháp trực tiếp: Sử dụng các công thức hoặc định lý có sẵn để giải bài.
  • Phương pháp gián tiếp: Biến đổi bài toán về một dạng quen thuộc hoặc dễ xử lý hơn.
  • Sử dụng đồ thị: Trong trường hợp bài toán liên quan đến hàm số hoặc biểu đồ.

Bước 3: Triển Khai Lời Giải

  • Áp dụng công thức và phương pháp đã chọn.
  • Trình bày các bước giải rõ ràng, logic.
  • Kiểm tra lại từng bước để đảm bảo không có sai sót.

Bước 4: Kiểm Tra Kết Quả

  • So sánh kết quả với yêu cầu đề bài.
  • Đánh giá xem lời giải có đáp ứng đầy đủ yêu cầu chưa.

3. Những Mẹo Học Hiệu Quả Khi Giải Bài Toán tổng và hiệu hai vectơ

Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:

Mẹo 1: Nắm Vững Kiến Thức Cơ Bản

Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.

Mẹo 2: Luyện Tập Thường Xuyên

Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.

Mẹo 3: Phân Tích Sai Lầm

Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.

Mẹo 4: Sử Dụng Tài Liệu Tham Khảo

Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.

4. Ví Dụ Chi Tiết Về Bài Toán tổng và hiệu hai vectơ

Ví Dụ 1: Đề Bài Cụ Thể

Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”

Lời Giải:

  • 1. Phân tích đề bài: [Chi tiết phân tích các yếu tố]
  • 2. Sử dụng phương pháp: [Phương pháp áp dụng và lý do chọn phương pháp này]
  • 3. Triển khai từng bước:
    • Bước 1: [Mô tả bước đầu tiên]
    • Bước 2: [Mô tả bước tiếp theo]

4. Kết quả cuối cùng: [Đáp án và kiểm tra lại đáp án].

Ví Dụ 2: Bài Tập Nâng Cao

Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:

  • Đề bài: “Chứng minh rằng [nội dung đề bài nâng cao].”
  • Gợi ý lời giải: [Cách tiếp cận và các bước triển khai chi tiết].

5. Tài Liệu Hỗ Trợ Học Tập

Nếu bạn cần thêm tài liệu tham khảo để giải bài toán tổng và hiệu hai vectơ, dưới đây là một số nguồn hữu ích:

  • Sách tham khảo: Các sách chuyên đề về toán học.
  • Website học toán: Những trang web uy tín cung cấp bài tập và lời giải chi tiết.
  • Video bài giảng: Các kênh YouTube hoặc khóa học trực tuyến giúp bạn hiểu sâu hơn về phương pháp giải.

6. Lời Khuyên Từ Chuyên Gia

Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.

7. Kết Luận

Bài toán tổng và hiệu hai vectơ là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.

Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!

>> Xem thêm đáp án chi tiết về: tổng và hiệu hai vectơ.