Logo Header
  1. Môn Toán
  2. tính tổng biểu thức tổ hợp có sử dụng đạo hàm

tính tổng biểu thức tổ hợp có sử dụng đạo hàm

Bài viết hướng dẫn sử dụng đạo hàm để tính tổng biểu thức tổ hợp, đây là dạng toán nâng cao trong chương trình Đại số và Giải tích 11.

1. PHƯƠNG PHÁP VÀ DẤU HIỆU

• Phương pháp chung:

+ Khai triển nhị thức \({(a \pm bx)^n}.\)

+ Lấy đạo hàm cấp \(1\) hoặc cấp \(2\) ….

+ Chọn \(a\), \(b\), \(x\) thích hợp.

• Dấu hiệu nhận biết đạo hàm cấp \(1\) (một lần hoặc nhiều lần):

+ Trong mỗi số hạng xuất hiện số hạng tổng quát: \(kC_n^k\), không có mặt số hạng \(C_n^0\) hoặc \(C_n^n.\)

+ Nếu xuất hiện \({k^2}C_n^k\) thì sau khi đạo hàm lần \(1\) ta nhân \(2\) vế với \(x\) rồi đạo hàm lần \(2\) ….

Nói chung việc nhận thêm đại lượng vào khai triển tùy thuộc vào đại lượng tổng quát mà từ đó có thể suy trực tiếp ra đại lượng cần nhân thêm.

• Dấu hiệu nhận biết đạo hàm cấp \(2\):

+ Trong mỗi số hạng xuất hiện số hạng dạng tổng quát \(k(k – 1)C_n^k.\)

+ Trong tổng không xuất hiện \(C_n^0\), \(C_n^1\) hoặc \(C_n^n\), \(C_n^{n – 1}.\)

2. BÀI TẬP ÁP DỤNG

Bài 1: Chứng minh rằng: \(C_n^1 + 2C_n^2 + 3C_n^3 + \ldots + nC_n^n = n{.2^{n – 1}}\) (với \(n\) nguyên dương).

Lời giải:

Xét khai triển nhị thức: \({(1 + x)^n}\) \( = C_n^0 + C_n^1x + C_n^2{x^2} + \ldots + C_n^n{x^n}.\)

Đạo hàm hai vế ta được: \(n{(1 + x)^{n – 1}}\) \( = C_n^1 + 2C_n^2x + 3C_n^3{x^2} + \ldots + nC_n^n{x^{n – 1}}.\)

Chọn \(x = 1\), ta được: \(n{(1 + 1)^{n – 1}}\) \( = C_n^1 + 2C_n^2 + 3C_n^3 + \ldots + nC_n^n.\)

\( \Leftrightarrow C_n^1 + 2C_n^2 + 3C_n^3 + \ldots + nC_n^n\) \( = n{.2^{n – 1}}.\)

Bài 2: Tìm số nguyên dương \(n\) sao cho:

\(C_{2n + 1}^1 – 2.2C_{2n + 1}^2\) \( + {3.2^2}C_{2n + 1}^3 – {4.2^3}C_{2n + 1}^4\) \( + \ldots + (2n + 1){.2^{2n}}C_{2n + 1}^{2n + 1}\) \( = 2005.\)

Lời giải:

Xét khai triển: \({(1 + x)^{2n + 1}}\) \( = C_{2n + 1}^0 + C_{2n + 1}^1x\) \( + C_{2n + 1}^2{x^2} + C_{2n + 1}^3{x^3}\) \( + \ldots + C_{2n + 1}^{2n + 1}{x^{2n + 1}}.\)

Đạo hàm hai vế ta được:

\((2n + 1){(1 + x)^{2n}}\) \( = C_{2n + 1}^1 + 2C_{2n + 1}^2x\) \( + 3C_{2n + 1}^3{x^2} + \ldots + (2n + 1)C_{2n + 1}^{2n + 1}{x^{2n}}.\)

Chọn \(x= -2\), ta được:

\((2n + 1){(1 – 2)^{2n}}\) \( = C_{2n + 1}^1 – 2.2C_{2n + 1}^2\) \( + {3.2^2}C_{2n + 1}^3\) \( – \ldots + (2n + 1){2^{2n}}C_{2n + 1}^{2n + 1}.\)

\( \Leftrightarrow C_{2n + 1}^1 – 2.2C_{2n + 1}^2\) \( + {3.2^2}C_{2n + 1}^3\) \( – \ldots + (2n + 1){2^{2n}}C_{2n + 1}^{2n + 1}\) \( = 2n + 1.\)

Theo đề bài ta có: \(2n + 1 = 2005\) \( \Leftrightarrow n = 1002.\)

Vậy \(n = 1002.\)

Bài 3: Hãy khai triển nhị thức Newton \({(1 – x)^{2n}}\) với \(n\) là số nguyên dương. Từ đó chứng minh rằng:

\(1C_{2n}^1 + 3C_{2n}^3\) \( + \ldots + (2n – 1)C_{2n}^{2n – 1}\) \( = 2C_{2n}^2 + 4C_{2n}^4\) \( + \ldots + 2nC_{2n}^{2n}.\)

Lời giải:

Ta có: \({(1 – x)^{2n}}\) \( = C_{2n}^0 – C_{2n}^1x\) \( + C_{2n}^2{x^2} – C_{2n}^3{x^3}\) \( + C_{2n}^4{x^4} – \ldots – C_{2n}^{2n – 1}{x^{2n – 1}}\) \( + C_{2n}^{2n}{x^{2n}}.\)

Đạo hàm hai vế ta được: \( – 2n{(1 – x)^{2n – 1}}\) \( = – C_{2n}^1 + 2C_{2n}^2x\) \( – 3C_{2n}^3{x^2} + 4C_{2n}^4{x^3}\) \( – \ldots – (2n – 1)C_{2n}^{2n – 1}{x^{2n – 2}}\) \( + 2nC_{2n}^{2n}{x^{2n – 1}}.\)

Chọn \(x = 1\) ta được: \(0 = – C_{2n}^1 + 2C_{2n}^2\) \( – 3C_{2n}^3 + 4C_{2n}^4\) \( – \ldots – (2n – 1)C_{2n}^{2n – 1} + 2nC_{2n}^{2n}\) \( \Leftrightarrow 1C_{2n}^1 + 3C_{2n}^3\) \( + \ldots + (2n – 1)C_{2n}^{2n – 1}\) \( = 2C_{2n}^2 + 4C_{2n}^4 + \ldots + 2nC_{2n}^{2n}.\)

Bài 4: Tính tổng \(S = C_{2000}^0 + 2C_{2000}^1\) \( + 3C_{2000}^2 + \ldots + 2001C_{2000}^{2000}.\)

Lời giải:

Cách 1:

Ta có: \(S = C_{2000}^0 + 2C_{2000}^1\) \( + 3C_{2000}^2 + \ldots + 2001C_{2000}^{2000}\) \( = {S_1} + {S_2}.\)

Với:

\({S_1} = C_{2000}^0 + C_{2000}^1\) \( + C_{2000}^2 + \ldots + C_{2000}^{2000}.\)

\({S_2} = C_{2000}^1 + 2C_{2000}^2\) \( + 3C_{2000}^3 + \ldots + 2000C_{2000}^{2000}.\)

Xét nhị thức \({(1 + x)^{2000}}\) \( = C_{2000}^0 + C_{2000}^1x\) \( + C_{2000}^2{x^2} + \ldots + C_{2000}^{2000}{x^{2000}}.\)

Chọn \(x = 1\) ta được: \({S_1} = C_{2000}^0 + C_{2000}^1\) \( + C_{2000}^2 + \ldots + C_{2000}^{2000}\) \( = {2^{2000}}.\)

Xét nhị thức: \({(1 + x)^{2000}}\) \( = C_{2000}^0 + C_{2000}^1x\) \( + C_{2000}^2{x^2} + \ldots + C_{2000}^{2000}{x^{2000}}.\)

Lấy đạo hàm \(2\) vế ta được:

\(2000{(1 + x)^{1999}}\) \( = C_{2000}^1 + 2C_{2000}^2x\) \( + 3C_{2000}^3{x^2} + \ldots + 2000C_{2000}^{2000}{x^{1999}}.\)

Chọn \(x = 1\) ta được: \({S_2} = C_{2000}^1 + 2C_{2000}^2\) \( + 3C_{2000}^3 + \ldots + 2000C_{2000}^{2000}.\)

\( = {2000.2^{1999}}\) \( = {1000.2.2^{1999}}\) \( = {1000.2^{2000}}.\)

Vậy \(S = {S_1} + {S_2}\) \( = {2^{2000}} + {1000.2^{2000}}\) \( = {1001.2^{2000}}.\)

Cách 2:

Xét nhị thức: \({(1 + x)^{2000}}\) \( = C_{2000}^0 + C_{2000}^1x\) \( + C_{2000}^2{x^2} + \ldots + C_{2000}^{2000}{x^{2000}}.\)

Nhân \(2\) vế với \(x\) ta được:

\(x.{(1 + x)^{2000}}\) \( = C_{2000}^0x + C_{2000}^1{x^2}\) \( + C_{2000}^2{x^3} + \ldots + C_{2000}^{2000}{x^{2001}}.\)

Lấy đạo hàm hai vế ta được:

\({(1 + x)^{2000}} + 2000x.{(1 + x)^{1999}}\) \( = C_{2000}^0 + 2C_{2000}^1x\) \( + 3C_{2000}^2{x^2} + \ldots + 2001C_{2000}^{2000}{x^{2000}}.\)

Chọn \(x = 1\) ta được:

\(S = C_{2000}^0 + 2C_{2000}^1\) \( + 3C_{2000}^2 + \ldots + 2001C_{2000}^{2000}\) \( = {2^{2000}} + {2000.2^{1999}}\) \( = {1001.2^{2000}}.\)

Bài 5: Tính tổng: \(S = C_n^1 – 2C_n^2\) \( + 3C_n^3 – 4C_n^4\) \( + \ldots + {( – 1)^{n – 1}}nC_n^n.\) Trong đó \(n\) là số tự nhiên lớn hơn \(2.\)

Lời giải:

Xét nhị thức: \({(1 – x)^n}\) \( = C_n^0 – C_n^1x\) \( + C_n^2{x^2} + \ldots + C_n^n{( – 1)^n}{x^n}.\)

Đạo hàm \(2\) vế ta được: \( – {(1 – x)^{n – 1}}\) \( = – C_n^1 + 2C_n^2x\) \( + \ldots + n.C_n^n{( – 1)^n}{x^{n – 1}}.\)

Chọn \(x = 1\) ta được: \( – {(1 – 1)^{n – 1}}\) \( = – C_n^1 + 2C_n^2\) \( + \ldots + n.C_n^n{( – 1)^n}.\)

\( \Leftrightarrow C_n^1 – 2C_n^2\) \( + 3C_n^3 – 4C_n^4\) \( + \ldots + {( – 1)^{n – 1}}nC_n^n = 0.\)

Vậy \(S =0.\)

Bài 6: Cho \(n\) là số tự nhiên, \(n \ge 2.\) Chứng minh đẳng thức sau: \({n^2}C_n^0 + {(n – 1)^2}C_n^1\) \( + {(n – 2)^2}C_n^2\) \( + \ldots + {2^2}C_n^{n – 2} + {1^2}C_n^{n – 1}\) \( = n(n + 1){2^{n – 2}}.\)

Lời giải:

Xét khai triển: \({(x + 1)^n}\) \( = C_n^0{x^n} + C_n^1{x^{n – 1}}\) \( + C_n^2{x^{n – 2}} + \ldots + C_n^{n – 1}{x^1} + C_n^n\) \((1).\)

Đạo hàm hai vế của \((1)\) ta được:

\(n{(x + 1)^{n – 1}}\) \( = nC_n^0{x^{n – 1}} + (n – 1)C_n^1{x^{n – 2}}\) \( + (n – 2)C_n^2{x^{n – 3}} + \ldots + 1.C_n^{n – 1}\) \((2).\)

Nhân \(2\) vế của \((2)\) với \(x\) ta được:

\(nx{(x + 1)^{n – 1}}\) \( = nC_n^0{x^n} + (n – 1)C_n^1{x^{n – 1}}\) \( + (n – 2)C_n^2{x^{n – 2}} + \ldots + 1.C_n^{n – 1}x\) \((3).\)

Đạo hàm hai vế của \((3)\) ta được: \(\left[ {n{{(x + 1)}^{n – 1}} + n(n – 1)x{{(x + 1)}^{n – 2}}} \right].\)

\( = {n^2}C_n^0{x^{n – 1}}\) \( + {(n – 1)^2}C_n^1{x^{n – 2}}\) \( + {(n – 2)^2}C_n^2{x^{n – 3}}\) \( + \ldots + {1^2}.C_n^{n – 1}.\)

Chọn \(x=1\) ta được:

\({n^2}C_n^0\) \( + {(n – 1)^2}C_n^1\) \( + {(n – 2)^2}C_n^2\) \( + \ldots + {2^2}C_n^{n – 2} + {1^2}C_n^{n – 1}\) \( = n(n + 1){2^{n – 2}}.\)

Bài 7: Chứng minh rằng \(\forall n \in {N^*}\) ta có: \(C_n^1{3^{n – 1}}\) \( + 2C_n^2{3^{n – 2}}\) \( + 3C_n^3{3^{n – 3}}\) \( + \ldots + nC_n^n\) \( = n{.4^{n – 1}}.\)

Lời giải:

Xét khai triển: \({(3 + x)^n}\) \( = C_n^0{3^n} + C_n^1{3^{n – 1}}x\) \( + C_n^2{3^{n – 2}}{x^2} + \ldots + C_n^n{x^n}.\)

Đạo hàm hai vế ta được:

\(n{(3 + x)^{n – 1}}\) \( = C_n^1{3^{n – 1}} + 2C_n^2{3^{n – 2}}x\) \( + 3C_n^3{3^{n – 3}}{x^2} + \ldots + nC_n^n{x^{n – 1}}.\)

Chọn \(x = 1\) ta được: \(C_n^1{3^{n – 1}} + 2C_n^2{3^{n – 2}}\) \( + 3C_n^3{3^{n – 3}} + \ldots + nC_n^n\) \( = n{.4^{n – 1}}.\)

Bài 8: Chứng minh rằng:

\(100C_{100}^0{\left( {\frac{1}{2}} \right)^{99}}\) \( – 101C_{100}^1{\left( {\frac{1}{2}} \right)^{100}}\) \( + \ldots – 199C_{100}^{99}{\left( {\frac{1}{2}} \right)^{198}}\) \( + 200C_{100}^{100}{\left( {\frac{1}{2}} \right)^{199}} = 0.\)

Lời giải:

Xét khai triển: \({\left( {x + {x^2}} \right)^{100}}\) \( = C_{100}^0{x^{100}} + C_{100}^1{x^{101}}\) \( + C_{100}^2{x^{102}} + \ldots + C_{100}^{100}{x^{200}}.\)

Đạo hàm hai vế ta được:

\(100{\left( {x + {x^2}} \right)^{99}}(1 + 2x)\) \( = 100C_{100}^0{x^{99}} + 101C_{100}^1{x^{100}}\) \( + 102C_{100}^2{x^{101}} + \ldots + 200C_{100}^{100}{x^{199}}.\)

Chọn \(x = – \frac{1}{2}\) ta được \(0 = – 100C_{100}^0{\left( {\frac{1}{2}} \right)^{99}}\) \( + 101C_{100}^1{\left( {\frac{1}{2}} \right)^{100}}\) \( – 102C_{100}^2{\left( {\frac{1}{2}} \right)^{101}}\) \( + \ldots + 199C_{100}^{99}{\left( {\frac{1}{2}} \right)^{198}}\) \( – 200C_{100}^{100}{\left( {\frac{1}{2}} \right)^{199}}.\)

Hay \(100C_{100}^0{\left( {\frac{1}{2}} \right)^{99}}\) \( – 101C_{100}^1{\left( {\frac{1}{2}} \right)^{100}}\) \( + \ldots – 199C_{100}^{99}{\left( {\frac{1}{2}} \right)^{198}}\) \( + 200C_{100}^{100}{\left( {\frac{1}{2}} \right)^{199}} = 0.\)

Bài 9: Cho \(n\) là số nguyên dương.Chứng minh rằng:

\(C_{2n}^0 – 2.C_{2n}^1\) \( + 3C_{2n}^2 – 4C_{2n}^3\) \( + \ldots + (2n + 1)C_{2n}^{2n} = 0.\)

Lời giải:

Xét khai triển \({(1 + x)^{2n}}\) \( = C_{2n}^0 + C_{2n}^1x\) \( + C_{2n}^2{x^2} + C_{2n}^3{x^3}\) \( + \ldots + C_{2n}^{2n}{x^{2n}}.\)

Suy ra: \(x{(1 + x)^{2n}}\) \( = C_{2n}^0x + C_{2n}^1{x^2}\) \( + C_{2n}^2{x^3} + C_{2n}^3{x^4}\) \( + \ldots + C_{2n}^{2n}{x^{2n + 1}}.\)

Đạo hàm \(2\) vế ta được:

\({(1 + x)^{2n}} + 2n{(1 + x)^{2n – 1}}x\) \( = C_{2n}^0 + 2C_{2n}^1x\) \( + 3C_{2n}^2{x^2} + 4C_{2n}^3{x^3}\) \( + \ldots + (2n + 1)C_{2n}^{2n}{x^{2n}}.\)

Chọn \(x = -1\) ta được: \(C_{2n}^0 – 2C_{2n}^1\) \( + 3C_{2n}^2 – 4C_{2n}^3\) \( + \ldots + (2n + 1)C_{2n}^{2n} = 0.\)

Bài 10: Chứng minh rằng: \(C_n^0 + 2C_n^1\) \( + 3C_n^2 + \ldots + (n + 1)C_n^n\) \( = (n + 2){2^{n – 1}}.\)

Lời giải:

Xét khai triển: \({(1 + x)^n}\) \( = C_n^0 + C_n^1x\) \( + C_n^2{x^2} + \ldots + C_n^n{x^n}.\)

Nhân \(2\) vế với \(x\) ta được: \(x{(1 + x)^n}\) \( = C_n^0x + C_n^1{x^2}\) \( + C_n^2{x^3} + \ldots + C_n^n{x^{n + 1}}.\)

Đạo hàm hai vế ta được:

\({(1 + x)^n} + nx{(1 + x)^{n – 1}}\) \( = C_n^0 + 2C_n^1x + 3C_n^2{x^2}\) \( + \ldots + (n + 1)C_n^n{x^n}.\)

Chọn \(x = 1\) ta được: \(C_n^0 + 2C_n^1 + 3C_n^2\) \( + \ldots + (n + 1)C_n^n\) \( = {2^n} + n{2^{n – 1}}\) \( = (n + 2){2^{n – 1}}.\)

Bài 11: Chứng minh rằng:

\(2.1C_n^2 + 3.2C_n^3 + 4.3C_n^4\) \( + \ldots + n(n – 1)C_n^n\) \( = n(n – 1){2^{n – 2}}.\)

Lời giải:

Xét khai triển: \({(1 + x)^n}\) \( = C_n^0 + C_n^1x + C_n^2{x^2}\) \( + \ldots + C_n^n{x^n}\) \((1).\)

Đạo hàm hai vế của \((1)\) ta được:

\(n{(1 + x)^{n – 1}}\) \( = C_n^1 + 2C_n^2x + 3C_n^3{x^2}\) \( + \ldots + nC_n^n{x^{n – 1}}\) \((2).\)

Đạo hàm hai vế của \((2)\) ta được:

\(n(n – 1){(1 + x)^{n – 2}}\) \( = 2.1C_n^2 + 3.2C_n^3x\) \( + 4.3C_n^4{x^2}\) \( + \ldots + n(n – 1)C_n^n{x^{n – 2}}.\)

Chọn \(x = 1\) ta được: \(2.1C_n^2 + 3.2C_n^3 + 4.3C_n^4\) \( + \ldots + n(n – 1)C_n^n\) \( = n(n – 1){2^{n – 2}}.\)

Bài 12: Chứng minh rằng: \(n{.2^{n – 1}}C_n^0\) \( + (n – 1){2^{n – 2}}.3C_n^1\) \( + (n – 2){2^{n – 3}}{.3^2}C_n^2\) \( + \ldots + {3^{n – 1}}C_n^{n – 1}\) \( = n{.5^{n – 1}}.\)

Lời giải:

Xét khai triển: \({(x + 3)^n}\) \( = C_n^0{x^n} + C_n^1{x^{n – 1}}.3\) \( + C_n^2{x^{n – 2}}{.3^2}\) \( + \ldots + C_n^{n – 1}x{.3^{n – 1}} + C_n^n{3^n}.\)

Đạo hàm hai vế ta được:

\(n{(x + 3)^{n – 1}}\) \( = nC_n^0{x^{n – 1}}\) \( + (n – 1)C_n^1{x^{n – 2}}.3\) \( + (n – 2)C_n^2{x^{n – 3}}{.3^2}\) \( + \ldots + C_n^{n – 1}{3^{n – 1}}.\)

Chọn \(x = 1\) ta được:

\(n{.2^{n – 1}}C_n^0\) \( + (n – 1){2^{n – 2}}.3C_n^1\) \( + (n – 2){2^{n – 3}}{.3^2}C_n^2\) \( + \ldots + {3^{n – 1}}C_n^{n – 1}\) \( = n{.5^{n – 1}}.\)

Bài 13: Tính: \(S = 3.2.1C_n^3\) \( – 4.3.2C_n^4\) \( + 5.4.3C_n^5{x^2}\) \( + \ldots + n(n – 1)(n – 2){( – 1)^{n – 3}}C_n^n\) với \(n \ge 3\), \(n \in N.\)

Lời giải:

Xét khai triển: \({(1 + x)^n}\) \( = C_n^0 + C_n^1x\) \( + C_n^2{x^2} + \ldots + C_n^n{x^n}\) \((1).\)

Đạo hàm hai vế của \((1)\) ta được:

\(n{(1 + x)^{n – 1}}\) \( = C_n^1 + 2C_n^2x\) \( + 3C_n^3{x^2} + \ldots + nC_n^n{x^{n – 1}}\) \((2).\)

Đạo hàm hai vế của \((2)\) ta được:

\(n(n – 1){(1 + x)^{n – 2}}\) \( = 2.1C_n^2 + 3.2C_n^3x + 4.3C_n^4{x^2}\) \( + \ldots + n(n – 1)C_n^n{x^{n – 2}}\) \((3).\)

Đạo hàm hai vế của \((3)\) ta được:

\(n(n – 1)(n – 2){(1 + x)^{n – 3}}\) \( = 3.2.1C_n^3 + 4.3.2C_n^4x\) \( + 5.4.3C_n^5{x^2}\) \( + \ldots + n(n – 1)(n – 2)C_n^n{x^{n – 3}}.\)

Chọn \(x = -1\) ta được:

\(3.2.1C_n^3 – 4.3.2C_n^4\) \( + 5.4.3C_n^5{x^2}\) \( + \ldots + n(n – 1)(n – 2){( – 1)^{n – 3}}C_n^n = 0.\)

Vậy \(S = 0.\)

Bài 14: Chứng minh rằng: \(C_n^2\) \( + 2C_n^3\) \( + 3C_n^4\) \( + \ldots + (n – 1)C_n^n\) \( /> (n – 2){2^{n – 1}}.\)

Lời giải:

Xét khai triển: \({(1 + x)^n}\) \( = C_n^0 + C_n^1x + C_n^2{x^2}\) \( + \ldots + C_n^n{x^n}\) \((1).\)

Đạo hàm hai vế của \((1)\) ta được: \(n{(1 + x)^{n – 1}}\) \( = C_n^1 + 2C_n^2x + 3C_n^3{x^2}\) \( + \ldots + nC_n^n{x^{n – 1}}.\)

Chọn \(x = 1\) ta được: \(C_n^1 + 2C_n^2 + 3C_n^3 + \ldots + nC_n^n\) \( = n{.2^{n – 1}}\) \((2).\)

Từ \((1)\) ta chọn \(x =1\), suy ra: \(C_n^0 + C_n^1 + C_n^2 + \ldots + C_n^n = {2^n}\) \((3).\)

Lấy \((2)\) trừ \((3)\) ta được: \(C_n^2 + 2C_n^3 + 3C_n^4\) \( + \ldots + (n – 1)C_n^n – C_n^0\) \( = n{.2^{n – 1}} – {2^n}.\)

\( \Leftrightarrow C_n^2 + 2C_n^3 + 3C_n^4 + \ldots + (n – 1)C_n^n\) \( = n{.2^{n – 1}} – {2^n} + C_n^0\) \( = (n – 2){2^{n – 1}} + 1\) \( /> (n – 2){2^{n – 1}}.\)

Bài 15: Cho \(f(x) = x{\left( {{x^2} + 1} \right)^{2015}}.\)

a) Tính \(f'(1).\)

b) Tính \(S = 4031C_{2015}^0 + 4029C_{2015}^1\) \( + 4027C_{2015}^2 + \ldots + C_{2015}^{2015}.\)

Lời giải:

a) Ta có: \(f'(x) = {\left( {{x^2} + 1} \right)^{2015}}\) \( + 4030{x^2}{\left( {{x^2} + 1} \right)^{2014}}.\)

Suy ra: \(f'(1) = {\left( {{1^2} + 1} \right)^{2015}}\) \( + {4030.1^2}{\left( {{1^2} + 1} \right)^{2014}}\) \( = {2^{2015}} + {4030.2^{2014}}\) \( = {4032.2^{2014}}\) \( = {63.2^{2020}}\) \((1).\)

b) Mặt khác ta có:

\(f(x) = x{\left( {{x^2} + 1} \right)^{2015}}\) \( = x\left( {C_{2015}^0{x^{4030}} + C_{2015}^1{x^{4028}} + C_{2015}^2{x^{4026}} + \ldots + C_{2015}^{2015}} \right).\)

\( = C_{2015}^0{x^{4031}} + C_{2015}^1{x^{4029}}\) \( + C_{2015}^2{x^{4027}} + \ldots + C_{2015}^{2015}x.\)

Suy ra: \(f'(x) = 4031C_{2015}^0{x^{4030}}\) \( + 4029C_{2015}^1{x^{4028}}\) \( + 4027C_{2015}^2{x^{4026}}\) \( + \ldots + C_{2015}^{2015}.\)

\( \Rightarrow f'(1) = 4031C_{2015}^0 + 4029C_{2015}^1\) \( + 4027C_{2015}^2 + \ldots + C_{2015}^{2015}\) \((2).\)

Từ \((1)\) và \((2)\) suy ra: \(4031C_{2015}^0 + 4029C_{2015}^1\) \( + 4027C_{2015}^2 + \ldots + C_{2015}^{2015}\) \( = {63.2^{2020}}.\)

Vậy \(S = {63.2^{2020}}.\)

Bài 16: Tìm số nguyên dương \(n\) sao cho:

\(C_{2n + 1}^1 – 2.2C_{2n + 1}^2\) \( + {3.2^2}C_{2n + 1}^3 – {4.2^3}C_{2n + 1}^4\) \( + \ldots + (2n + 1){.2^{2n}}C_{2n + 1}^{2n + 1}\) \( = 2015.\)

Lời giải:

Xét khai triển: \({(1 + x)^{2n + 1}}\) \( = C_{2n + 1}^0 + C_{2n + 1}^1x\) \( + C_{2n + 1}^2{x^2} + C_{2n + 1}^3{x^3}\) \( + C_{2n + 1}^4{x^4} + \ldots + C_{2n + 1}^{2n + 1}{x^{2n + 1}}.\)

Đạo hàm hai vế ta được:

\((2n + 1){(1 + x)^{2n}}\) \( = C_{2n + 1}^1 + 2C_{2n + 1}^2x\) \( + 3C_{2n + 1}^3{x^2} + 4C_{2n + 1}^4{x^3}\) \( + \ldots + (2n + 1)C_{2n + 1}^{2n + 1}{x^{2n}}.\)

Chọn \(x= -2\) ta được:

\((2n + 1){(1 – 2)^{2n}}\) \( = C_{2n + 1}^1 – 2.2C_{2n + 1}^2x\) \( + {3.2^2}C_{2n + 1}^3 – {4.2^3}C_{2n + 1}^4\) \( + \ldots + (2n + 1){.2^{2n}}C_{2n + 1}^{2n + 1}.\)

\( \Leftrightarrow C_{2n + 1}^1 – 2.2C_{2n + 1}^2x\) \( + {3.2^2}C_{2n + 1}^3 – {4.2^3}C_{2n + 1}^4\) \( + \ldots + (2n + 1){.2^{2n}}C_{2n + 1}^{2n + 1}\) \( = 2n + 1.\)

Từ giả thiết suy ra: \(2n + 1 = 2015\) \( \Leftrightarrow n = 1007.\)

Bài 17: Chứng minh rằng: \(\frac{{C_n^1 + 2C_n^2 + 3C_n^3 + \ldots + nC_n^n}}{n} < n!\) với mọi \(n \in N\), \(n \ge 3.\)

Lời giải:

Xét khai triển: \({(1 + x)^n}\) \( = C_n^0 + C_n^1x\) \( + C_n^2{x^2} + \ldots + C_n^n{x^n}.\)

Đạo hàm hai vế của \((1)\) ta được: \(n{(1 + x)^{n – 1}}\) \( = C_n^1 + 2C_n^2x\) \( + 3C_n^3{x^2} + \ldots + nC_n^n{x^{n – 1}}.\)

Chọn \(x = 1\) ta được: \(C_n^1 + 2C_n^2 + 3C_n^3\) \( + \ldots + nC_n^n = n{.2^{n – 1}}.\)

\( \Leftrightarrow \frac{{C_n^1 + 2C_n^2 + 3C_n^3 + \ldots + nC_n^n}}{n} = {2^{n – 1}}.\)

Suy ra bài toán dẫn đến việc chứng minh: \({2^{n – 1}} < n!\) \((*)\) với mọi \(n \in N\), \(n \ge 3.\)

Ta chứng minh \((*)\) bằng phương pháp quy nạp như sau:

+ Với \(n=3\), thay vào \((*)\) thỏa mãn.

+ Giả sử \((*)\) đúng với \(n= k\) \((k /> 3)\), ta có: \({2^{k – 1}} < k!.\)

Ta cần chứng minh \((*)\) đúng với \(n=k+1\), tức là chứng minh: \({2^k} < (k + 1)!.\)

Thật vậy, ta có: \({2^k} = {2.2^{k – 1}}\) \( < 2.k! < (k + 1).k!\) \( = (k + 1)!.\)

Suy ra \((*)\) đúng với mọi \(n \in N\), \(n \ge 3.\)

Vậy \(\frac{{C_n^1 + 2C_n^2 + 3C_n^3 + \ldots + nC_n^n}}{n} < n!.\)

Giải bài toán tính tổng biểu thức tổ hợp có sử dụng đạo hàm: Phương Pháp, Mẹo Học Hiệu Quả và Ví Dụ Chi Tiết

Bài toán tính tổng biểu thức tổ hợp có sử dụng đạo hàm là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.

1. Tầm Quan Trọng Của Việc Giải Bài Toán tính tổng biểu thức tổ hợp có sử dụng đạo hàm

Bài toán tính tổng biểu thức tổ hợp có sử dụng đạo hàm thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.

  • Rèn luyện tư duy logic: Việc giải các bài toán thuộc dạng này giúp bạn phát triển khả năng tư duy phân tích, nhận biết mối quan hệ giữa các yếu tố trong bài toán.
  • Củng cố kiến thức: Qua quá trình luyện tập, bạn sẽ hiểu sâu hơn về các công thức, định lý, và phương pháp áp dụng.
  • Chuẩn bị cho kỳ thi: Việc làm quen với dạng bài này sẽ giúp bạn tự tin hơn khi bước vào phòng thi.

2. Phương Pháp Giải Bài Toán tính tổng biểu thức tổ hợp có sử dụng đạo hàm

Để giải hiệu quả bài toán tính tổng biểu thức tổ hợp có sử dụng đạo hàm, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:

Bước 1: Hiểu Đề Bài

  • Đọc kỹ đề bài để nắm bắt yêu cầu chính xác.
  • Xác định các yếu tố đã cho và cần tìm.
  • Phân tích mối liên hệ giữa các yếu tố.

Bước 2: Lựa Chọn Phương Pháp Giải

Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:

  • Phương pháp trực tiếp: Sử dụng các công thức hoặc định lý có sẵn để giải bài.
  • Phương pháp gián tiếp: Biến đổi bài toán về một dạng quen thuộc hoặc dễ xử lý hơn.
  • Sử dụng đồ thị: Trong trường hợp bài toán liên quan đến hàm số hoặc biểu đồ.

Bước 3: Triển Khai Lời Giải

  • Áp dụng công thức và phương pháp đã chọn.
  • Trình bày các bước giải rõ ràng, logic.
  • Kiểm tra lại từng bước để đảm bảo không có sai sót.

Bước 4: Kiểm Tra Kết Quả

  • So sánh kết quả với yêu cầu đề bài.
  • Đánh giá xem lời giải có đáp ứng đầy đủ yêu cầu chưa.

3. Những Mẹo Học Hiệu Quả Khi Giải Bài Toán tính tổng biểu thức tổ hợp có sử dụng đạo hàm

Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:

Mẹo 1: Nắm Vững Kiến Thức Cơ Bản

Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.

Mẹo 2: Luyện Tập Thường Xuyên

Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.

Mẹo 3: Phân Tích Sai Lầm

Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.

Mẹo 4: Sử Dụng Tài Liệu Tham Khảo

Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.

4. Ví Dụ Chi Tiết Về Bài Toán tính tổng biểu thức tổ hợp có sử dụng đạo hàm

Ví Dụ 1: Đề Bài Cụ Thể

Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”

Lời Giải:

  • 1. Phân tích đề bài: [Chi tiết phân tích các yếu tố]
  • 2. Sử dụng phương pháp: [Phương pháp áp dụng và lý do chọn phương pháp này]
  • 3. Triển khai từng bước:
    • Bước 1: [Mô tả bước đầu tiên]
    • Bước 2: [Mô tả bước tiếp theo]

4. Kết quả cuối cùng: [Đáp án và kiểm tra lại đáp án].

Ví Dụ 2: Bài Tập Nâng Cao

Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:

  • Đề bài: “Chứng minh rằng [nội dung đề bài nâng cao].”
  • Gợi ý lời giải: [Cách tiếp cận và các bước triển khai chi tiết].

5. Tài Liệu Hỗ Trợ Học Tập

Nếu bạn cần thêm tài liệu tham khảo để giải bài toán tính tổng biểu thức tổ hợp có sử dụng đạo hàm, dưới đây là một số nguồn hữu ích:

  • Sách tham khảo: Các sách chuyên đề về toán học.
  • Website học toán: Những trang web uy tín cung cấp bài tập và lời giải chi tiết.
  • Video bài giảng: Các kênh YouTube hoặc khóa học trực tuyến giúp bạn hiểu sâu hơn về phương pháp giải.

6. Lời Khuyên Từ Chuyên Gia

Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.

7. Kết Luận

Bài toán tính tổng biểu thức tổ hợp có sử dụng đạo hàm là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.

Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!

>> Xem thêm đáp án chi tiết về: tính tổng biểu thức tổ hợp có sử dụng đạo hàm.