Bài viết hướng dẫn sử dụng đạo hàm để tính tổng biểu thức tổ hợp, đây là dạng toán nâng cao trong chương trình Đại số và Giải tích 11.
1. PHƯƠNG PHÁP VÀ DẤU HIỆU
• Phương pháp chung:
+ Khai triển nhị thức \({(a \pm bx)^n}.\)
+ Lấy đạo hàm cấp \(1\) hoặc cấp \(2\) ….
+ Chọn \(a\), \(b\), \(x\) thích hợp.
• Dấu hiệu nhận biết đạo hàm cấp \(1\) (một lần hoặc nhiều lần):
+ Trong mỗi số hạng xuất hiện số hạng tổng quát: \(kC_n^k\), không có mặt số hạng \(C_n^0\) hoặc \(C_n^n.\)
+ Nếu xuất hiện \({k^2}C_n^k\) thì sau khi đạo hàm lần \(1\) ta nhân \(2\) vế với \(x\) rồi đạo hàm lần \(2\) ….
Nói chung việc nhận thêm đại lượng vào khai triển tùy thuộc vào đại lượng tổng quát mà từ đó có thể suy trực tiếp ra đại lượng cần nhân thêm.
• Dấu hiệu nhận biết đạo hàm cấp \(2\):
+ Trong mỗi số hạng xuất hiện số hạng dạng tổng quát \(k(k – 1)C_n^k.\)
+ Trong tổng không xuất hiện \(C_n^0\), \(C_n^1\) hoặc \(C_n^n\), \(C_n^{n – 1}.\)
2. BÀI TẬP ÁP DỤNG
Bài 1: Chứng minh rằng: \(C_n^1 + 2C_n^2 + 3C_n^3 + \ldots + nC_n^n = n{.2^{n – 1}}\) (với \(n\) nguyên dương).
Lời giải:
Xét khai triển nhị thức: \({(1 + x)^n}\) \( = C_n^0 + C_n^1x + C_n^2{x^2} + \ldots + C_n^n{x^n}.\)
Đạo hàm hai vế ta được: \(n{(1 + x)^{n – 1}}\) \( = C_n^1 + 2C_n^2x + 3C_n^3{x^2} + \ldots + nC_n^n{x^{n – 1}}.\)
Chọn \(x = 1\), ta được: \(n{(1 + 1)^{n – 1}}\) \( = C_n^1 + 2C_n^2 + 3C_n^3 + \ldots + nC_n^n.\)
\( \Leftrightarrow C_n^1 + 2C_n^2 + 3C_n^3 + \ldots + nC_n^n\) \( = n{.2^{n – 1}}.\)
Bài 2: Tìm số nguyên dương \(n\) sao cho:
\(C_{2n + 1}^1 – 2.2C_{2n + 1}^2\) \( + {3.2^2}C_{2n + 1}^3 – {4.2^3}C_{2n + 1}^4\) \( + \ldots + (2n + 1){.2^{2n}}C_{2n + 1}^{2n + 1}\) \( = 2005.\)
Lời giải:
Xét khai triển: \({(1 + x)^{2n + 1}}\) \( = C_{2n + 1}^0 + C_{2n + 1}^1x\) \( + C_{2n + 1}^2{x^2} + C_{2n + 1}^3{x^3}\) \( + \ldots + C_{2n + 1}^{2n + 1}{x^{2n + 1}}.\)
Đạo hàm hai vế ta được:
\((2n + 1){(1 + x)^{2n}}\) \( = C_{2n + 1}^1 + 2C_{2n + 1}^2x\) \( + 3C_{2n + 1}^3{x^2} + \ldots + (2n + 1)C_{2n + 1}^{2n + 1}{x^{2n}}.\)
Chọn \(x= -2\), ta được:
\((2n + 1){(1 – 2)^{2n}}\) \( = C_{2n + 1}^1 – 2.2C_{2n + 1}^2\) \( + {3.2^2}C_{2n + 1}^3\) \( – \ldots + (2n + 1){2^{2n}}C_{2n + 1}^{2n + 1}.\)
\( \Leftrightarrow C_{2n + 1}^1 – 2.2C_{2n + 1}^2\) \( + {3.2^2}C_{2n + 1}^3\) \( – \ldots + (2n + 1){2^{2n}}C_{2n + 1}^{2n + 1}\) \( = 2n + 1.\)
Theo đề bài ta có: \(2n + 1 = 2005\) \( \Leftrightarrow n = 1002.\)
Vậy \(n = 1002.\)
Bài 3: Hãy khai triển nhị thức Newton \({(1 – x)^{2n}}\) với \(n\) là số nguyên dương. Từ đó chứng minh rằng:
\(1C_{2n}^1 + 3C_{2n}^3\) \( + \ldots + (2n – 1)C_{2n}^{2n – 1}\) \( = 2C_{2n}^2 + 4C_{2n}^4\) \( + \ldots + 2nC_{2n}^{2n}.\)
Lời giải:
Ta có: \({(1 – x)^{2n}}\) \( = C_{2n}^0 – C_{2n}^1x\) \( + C_{2n}^2{x^2} – C_{2n}^3{x^3}\) \( + C_{2n}^4{x^4} – \ldots – C_{2n}^{2n – 1}{x^{2n – 1}}\) \( + C_{2n}^{2n}{x^{2n}}.\)
Đạo hàm hai vế ta được: \( – 2n{(1 – x)^{2n – 1}}\) \( = – C_{2n}^1 + 2C_{2n}^2x\) \( – 3C_{2n}^3{x^2} + 4C_{2n}^4{x^3}\) \( – \ldots – (2n – 1)C_{2n}^{2n – 1}{x^{2n – 2}}\) \( + 2nC_{2n}^{2n}{x^{2n – 1}}.\)
Chọn \(x = 1\) ta được: \(0 = – C_{2n}^1 + 2C_{2n}^2\) \( – 3C_{2n}^3 + 4C_{2n}^4\) \( – \ldots – (2n – 1)C_{2n}^{2n – 1} + 2nC_{2n}^{2n}\) \( \Leftrightarrow 1C_{2n}^1 + 3C_{2n}^3\) \( + \ldots + (2n – 1)C_{2n}^{2n – 1}\) \( = 2C_{2n}^2 + 4C_{2n}^4 + \ldots + 2nC_{2n}^{2n}.\)
Bài 4: Tính tổng \(S = C_{2000}^0 + 2C_{2000}^1\) \( + 3C_{2000}^2 + \ldots + 2001C_{2000}^{2000}.\)
Lời giải:
Cách 1:
Ta có: \(S = C_{2000}^0 + 2C_{2000}^1\) \( + 3C_{2000}^2 + \ldots + 2001C_{2000}^{2000}\) \( = {S_1} + {S_2}.\)
Với:
\({S_1} = C_{2000}^0 + C_{2000}^1\) \( + C_{2000}^2 + \ldots + C_{2000}^{2000}.\)
\({S_2} = C_{2000}^1 + 2C_{2000}^2\) \( + 3C_{2000}^3 + \ldots + 2000C_{2000}^{2000}.\)
Xét nhị thức \({(1 + x)^{2000}}\) \( = C_{2000}^0 + C_{2000}^1x\) \( + C_{2000}^2{x^2} + \ldots + C_{2000}^{2000}{x^{2000}}.\)
Chọn \(x = 1\) ta được: \({S_1} = C_{2000}^0 + C_{2000}^1\) \( + C_{2000}^2 + \ldots + C_{2000}^{2000}\) \( = {2^{2000}}.\)
Xét nhị thức: \({(1 + x)^{2000}}\) \( = C_{2000}^0 + C_{2000}^1x\) \( + C_{2000}^2{x^2} + \ldots + C_{2000}^{2000}{x^{2000}}.\)
Lấy đạo hàm \(2\) vế ta được:
\(2000{(1 + x)^{1999}}\) \( = C_{2000}^1 + 2C_{2000}^2x\) \( + 3C_{2000}^3{x^2} + \ldots + 2000C_{2000}^{2000}{x^{1999}}.\)
Chọn \(x = 1\) ta được: \({S_2} = C_{2000}^1 + 2C_{2000}^2\) \( + 3C_{2000}^3 + \ldots + 2000C_{2000}^{2000}.\)
\( = {2000.2^{1999}}\) \( = {1000.2.2^{1999}}\) \( = {1000.2^{2000}}.\)
Vậy \(S = {S_1} + {S_2}\) \( = {2^{2000}} + {1000.2^{2000}}\) \( = {1001.2^{2000}}.\)
Cách 2:
Xét nhị thức: \({(1 + x)^{2000}}\) \( = C_{2000}^0 + C_{2000}^1x\) \( + C_{2000}^2{x^2} + \ldots + C_{2000}^{2000}{x^{2000}}.\)
Nhân \(2\) vế với \(x\) ta được:
\(x.{(1 + x)^{2000}}\) \( = C_{2000}^0x + C_{2000}^1{x^2}\) \( + C_{2000}^2{x^3} + \ldots + C_{2000}^{2000}{x^{2001}}.\)
Lấy đạo hàm hai vế ta được:
\({(1 + x)^{2000}} + 2000x.{(1 + x)^{1999}}\) \( = C_{2000}^0 + 2C_{2000}^1x\) \( + 3C_{2000}^2{x^2} + \ldots + 2001C_{2000}^{2000}{x^{2000}}.\)
Chọn \(x = 1\) ta được:
\(S = C_{2000}^0 + 2C_{2000}^1\) \( + 3C_{2000}^2 + \ldots + 2001C_{2000}^{2000}\) \( = {2^{2000}} + {2000.2^{1999}}\) \( = {1001.2^{2000}}.\)
Bài 5: Tính tổng: \(S = C_n^1 – 2C_n^2\) \( + 3C_n^3 – 4C_n^4\) \( + \ldots + {( – 1)^{n – 1}}nC_n^n.\) Trong đó \(n\) là số tự nhiên lớn hơn \(2.\)
Lời giải:
Xét nhị thức: \({(1 – x)^n}\) \( = C_n^0 – C_n^1x\) \( + C_n^2{x^2} + \ldots + C_n^n{( – 1)^n}{x^n}.\)
Đạo hàm \(2\) vế ta được: \( – {(1 – x)^{n – 1}}\) \( = – C_n^1 + 2C_n^2x\) \( + \ldots + n.C_n^n{( – 1)^n}{x^{n – 1}}.\)
Chọn \(x = 1\) ta được: \( – {(1 – 1)^{n – 1}}\) \( = – C_n^1 + 2C_n^2\) \( + \ldots + n.C_n^n{( – 1)^n}.\)
\( \Leftrightarrow C_n^1 – 2C_n^2\) \( + 3C_n^3 – 4C_n^4\) \( + \ldots + {( – 1)^{n – 1}}nC_n^n = 0.\)
Vậy \(S =0.\)
Bài 6: Cho \(n\) là số tự nhiên, \(n \ge 2.\) Chứng minh đẳng thức sau: \({n^2}C_n^0 + {(n – 1)^2}C_n^1\) \( + {(n – 2)^2}C_n^2\) \( + \ldots + {2^2}C_n^{n – 2} + {1^2}C_n^{n – 1}\) \( = n(n + 1){2^{n – 2}}.\)
Lời giải:
Xét khai triển: \({(x + 1)^n}\) \( = C_n^0{x^n} + C_n^1{x^{n – 1}}\) \( + C_n^2{x^{n – 2}} + \ldots + C_n^{n – 1}{x^1} + C_n^n\) \((1).\)
Đạo hàm hai vế của \((1)\) ta được:
\(n{(x + 1)^{n – 1}}\) \( = nC_n^0{x^{n – 1}} + (n – 1)C_n^1{x^{n – 2}}\) \( + (n – 2)C_n^2{x^{n – 3}} + \ldots + 1.C_n^{n – 1}\) \((2).\)
Nhân \(2\) vế của \((2)\) với \(x\) ta được:
\(nx{(x + 1)^{n – 1}}\) \( = nC_n^0{x^n} + (n – 1)C_n^1{x^{n – 1}}\) \( + (n – 2)C_n^2{x^{n – 2}} + \ldots + 1.C_n^{n – 1}x\) \((3).\)
Đạo hàm hai vế của \((3)\) ta được: \(\left[ {n{{(x + 1)}^{n – 1}} + n(n – 1)x{{(x + 1)}^{n – 2}}} \right].\)
\( = {n^2}C_n^0{x^{n – 1}}\) \( + {(n – 1)^2}C_n^1{x^{n – 2}}\) \( + {(n – 2)^2}C_n^2{x^{n – 3}}\) \( + \ldots + {1^2}.C_n^{n – 1}.\)
Chọn \(x=1\) ta được:
\({n^2}C_n^0\) \( + {(n – 1)^2}C_n^1\) \( + {(n – 2)^2}C_n^2\) \( + \ldots + {2^2}C_n^{n – 2} + {1^2}C_n^{n – 1}\) \( = n(n + 1){2^{n – 2}}.\)
Bài 7: Chứng minh rằng \(\forall n \in {N^*}\) ta có: \(C_n^1{3^{n – 1}}\) \( + 2C_n^2{3^{n – 2}}\) \( + 3C_n^3{3^{n – 3}}\) \( + \ldots + nC_n^n\) \( = n{.4^{n – 1}}.\)
Lời giải:
Xét khai triển: \({(3 + x)^n}\) \( = C_n^0{3^n} + C_n^1{3^{n – 1}}x\) \( + C_n^2{3^{n – 2}}{x^2} + \ldots + C_n^n{x^n}.\)
Đạo hàm hai vế ta được:
\(n{(3 + x)^{n – 1}}\) \( = C_n^1{3^{n – 1}} + 2C_n^2{3^{n – 2}}x\) \( + 3C_n^3{3^{n – 3}}{x^2} + \ldots + nC_n^n{x^{n – 1}}.\)
Chọn \(x = 1\) ta được: \(C_n^1{3^{n – 1}} + 2C_n^2{3^{n – 2}}\) \( + 3C_n^3{3^{n – 3}} + \ldots + nC_n^n\) \( = n{.4^{n – 1}}.\)
Bài 8: Chứng minh rằng:
\(100C_{100}^0{\left( {\frac{1}{2}} \right)^{99}}\) \( – 101C_{100}^1{\left( {\frac{1}{2}} \right)^{100}}\) \( + \ldots – 199C_{100}^{99}{\left( {\frac{1}{2}} \right)^{198}}\) \( + 200C_{100}^{100}{\left( {\frac{1}{2}} \right)^{199}} = 0.\)
Lời giải:
Xét khai triển: \({\left( {x + {x^2}} \right)^{100}}\) \( = C_{100}^0{x^{100}} + C_{100}^1{x^{101}}\) \( + C_{100}^2{x^{102}} + \ldots + C_{100}^{100}{x^{200}}.\)
Đạo hàm hai vế ta được:
\(100{\left( {x + {x^2}} \right)^{99}}(1 + 2x)\) \( = 100C_{100}^0{x^{99}} + 101C_{100}^1{x^{100}}\) \( + 102C_{100}^2{x^{101}} + \ldots + 200C_{100}^{100}{x^{199}}.\)
Chọn \(x = – \frac{1}{2}\) ta được \(0 = – 100C_{100}^0{\left( {\frac{1}{2}} \right)^{99}}\) \( + 101C_{100}^1{\left( {\frac{1}{2}} \right)^{100}}\) \( – 102C_{100}^2{\left( {\frac{1}{2}} \right)^{101}}\) \( + \ldots + 199C_{100}^{99}{\left( {\frac{1}{2}} \right)^{198}}\) \( – 200C_{100}^{100}{\left( {\frac{1}{2}} \right)^{199}}.\)
Hay \(100C_{100}^0{\left( {\frac{1}{2}} \right)^{99}}\) \( – 101C_{100}^1{\left( {\frac{1}{2}} \right)^{100}}\) \( + \ldots – 199C_{100}^{99}{\left( {\frac{1}{2}} \right)^{198}}\) \( + 200C_{100}^{100}{\left( {\frac{1}{2}} \right)^{199}} = 0.\)
Bài 9: Cho \(n\) là số nguyên dương.Chứng minh rằng:
\(C_{2n}^0 – 2.C_{2n}^1\) \( + 3C_{2n}^2 – 4C_{2n}^3\) \( + \ldots + (2n + 1)C_{2n}^{2n} = 0.\)
Lời giải:
Xét khai triển \({(1 + x)^{2n}}\) \( = C_{2n}^0 + C_{2n}^1x\) \( + C_{2n}^2{x^2} + C_{2n}^3{x^3}\) \( + \ldots + C_{2n}^{2n}{x^{2n}}.\)
Suy ra: \(x{(1 + x)^{2n}}\) \( = C_{2n}^0x + C_{2n}^1{x^2}\) \( + C_{2n}^2{x^3} + C_{2n}^3{x^4}\) \( + \ldots + C_{2n}^{2n}{x^{2n + 1}}.\)
Đạo hàm \(2\) vế ta được:
\({(1 + x)^{2n}} + 2n{(1 + x)^{2n – 1}}x\) \( = C_{2n}^0 + 2C_{2n}^1x\) \( + 3C_{2n}^2{x^2} + 4C_{2n}^3{x^3}\) \( + \ldots + (2n + 1)C_{2n}^{2n}{x^{2n}}.\)
Chọn \(x = -1\) ta được: \(C_{2n}^0 – 2C_{2n}^1\) \( + 3C_{2n}^2 – 4C_{2n}^3\) \( + \ldots + (2n + 1)C_{2n}^{2n} = 0.\)
Bài 10: Chứng minh rằng: \(C_n^0 + 2C_n^1\) \( + 3C_n^2 + \ldots + (n + 1)C_n^n\) \( = (n + 2){2^{n – 1}}.\)
Lời giải:
Xét khai triển: \({(1 + x)^n}\) \( = C_n^0 + C_n^1x\) \( + C_n^2{x^2} + \ldots + C_n^n{x^n}.\)
Nhân \(2\) vế với \(x\) ta được: \(x{(1 + x)^n}\) \( = C_n^0x + C_n^1{x^2}\) \( + C_n^2{x^3} + \ldots + C_n^n{x^{n + 1}}.\)
Đạo hàm hai vế ta được:
\({(1 + x)^n} + nx{(1 + x)^{n – 1}}\) \( = C_n^0 + 2C_n^1x + 3C_n^2{x^2}\) \( + \ldots + (n + 1)C_n^n{x^n}.\)
Chọn \(x = 1\) ta được: \(C_n^0 + 2C_n^1 + 3C_n^2\) \( + \ldots + (n + 1)C_n^n\) \( = {2^n} + n{2^{n – 1}}\) \( = (n + 2){2^{n – 1}}.\)
Bài 11: Chứng minh rằng:
\(2.1C_n^2 + 3.2C_n^3 + 4.3C_n^4\) \( + \ldots + n(n – 1)C_n^n\) \( = n(n – 1){2^{n – 2}}.\)
Lời giải:
Xét khai triển: \({(1 + x)^n}\) \( = C_n^0 + C_n^1x + C_n^2{x^2}\) \( + \ldots + C_n^n{x^n}\) \((1).\)
Đạo hàm hai vế của \((1)\) ta được:
\(n{(1 + x)^{n – 1}}\) \( = C_n^1 + 2C_n^2x + 3C_n^3{x^2}\) \( + \ldots + nC_n^n{x^{n – 1}}\) \((2).\)
Đạo hàm hai vế của \((2)\) ta được:
\(n(n – 1){(1 + x)^{n – 2}}\) \( = 2.1C_n^2 + 3.2C_n^3x\) \( + 4.3C_n^4{x^2}\) \( + \ldots + n(n – 1)C_n^n{x^{n – 2}}.\)
Chọn \(x = 1\) ta được: \(2.1C_n^2 + 3.2C_n^3 + 4.3C_n^4\) \( + \ldots + n(n – 1)C_n^n\) \( = n(n – 1){2^{n – 2}}.\)
Bài 12: Chứng minh rằng: \(n{.2^{n – 1}}C_n^0\) \( + (n – 1){2^{n – 2}}.3C_n^1\) \( + (n – 2){2^{n – 3}}{.3^2}C_n^2\) \( + \ldots + {3^{n – 1}}C_n^{n – 1}\) \( = n{.5^{n – 1}}.\)
Lời giải:
Xét khai triển: \({(x + 3)^n}\) \( = C_n^0{x^n} + C_n^1{x^{n – 1}}.3\) \( + C_n^2{x^{n – 2}}{.3^2}\) \( + \ldots + C_n^{n – 1}x{.3^{n – 1}} + C_n^n{3^n}.\)
Đạo hàm hai vế ta được:
\(n{(x + 3)^{n – 1}}\) \( = nC_n^0{x^{n – 1}}\) \( + (n – 1)C_n^1{x^{n – 2}}.3\) \( + (n – 2)C_n^2{x^{n – 3}}{.3^2}\) \( + \ldots + C_n^{n – 1}{3^{n – 1}}.\)
Chọn \(x = 1\) ta được:
\(n{.2^{n – 1}}C_n^0\) \( + (n – 1){2^{n – 2}}.3C_n^1\) \( + (n – 2){2^{n – 3}}{.3^2}C_n^2\) \( + \ldots + {3^{n – 1}}C_n^{n – 1}\) \( = n{.5^{n – 1}}.\)
Bài 13: Tính: \(S = 3.2.1C_n^3\) \( – 4.3.2C_n^4\) \( + 5.4.3C_n^5{x^2}\) \( + \ldots + n(n – 1)(n – 2){( – 1)^{n – 3}}C_n^n\) với \(n \ge 3\), \(n \in N.\)
Lời giải:
Xét khai triển: \({(1 + x)^n}\) \( = C_n^0 + C_n^1x\) \( + C_n^2{x^2} + \ldots + C_n^n{x^n}\) \((1).\)
Đạo hàm hai vế của \((1)\) ta được:
\(n{(1 + x)^{n – 1}}\) \( = C_n^1 + 2C_n^2x\) \( + 3C_n^3{x^2} + \ldots + nC_n^n{x^{n – 1}}\) \((2).\)
Đạo hàm hai vế của \((2)\) ta được:
\(n(n – 1){(1 + x)^{n – 2}}\) \( = 2.1C_n^2 + 3.2C_n^3x + 4.3C_n^4{x^2}\) \( + \ldots + n(n – 1)C_n^n{x^{n – 2}}\) \((3).\)
Đạo hàm hai vế của \((3)\) ta được:
\(n(n – 1)(n – 2){(1 + x)^{n – 3}}\) \( = 3.2.1C_n^3 + 4.3.2C_n^4x\) \( + 5.4.3C_n^5{x^2}\) \( + \ldots + n(n – 1)(n – 2)C_n^n{x^{n – 3}}.\)
Chọn \(x = -1\) ta được:
\(3.2.1C_n^3 – 4.3.2C_n^4\) \( + 5.4.3C_n^5{x^2}\) \( + \ldots + n(n – 1)(n – 2){( – 1)^{n – 3}}C_n^n = 0.\)
Vậy \(S = 0.\)
Bài 14: Chứng minh rằng: \(C_n^2\) \( + 2C_n^3\) \( + 3C_n^4\) \( + \ldots + (n – 1)C_n^n\) \( /> (n – 2){2^{n – 1}}.\)
Lời giải:
Xét khai triển: \({(1 + x)^n}\) \( = C_n^0 + C_n^1x + C_n^2{x^2}\) \( + \ldots + C_n^n{x^n}\) \((1).\)
Đạo hàm hai vế của \((1)\) ta được: \(n{(1 + x)^{n – 1}}\) \( = C_n^1 + 2C_n^2x + 3C_n^3{x^2}\) \( + \ldots + nC_n^n{x^{n – 1}}.\)
Chọn \(x = 1\) ta được: \(C_n^1 + 2C_n^2 + 3C_n^3 + \ldots + nC_n^n\) \( = n{.2^{n – 1}}\) \((2).\)
Từ \((1)\) ta chọn \(x =1\), suy ra: \(C_n^0 + C_n^1 + C_n^2 + \ldots + C_n^n = {2^n}\) \((3).\)
Lấy \((2)\) trừ \((3)\) ta được: \(C_n^2 + 2C_n^3 + 3C_n^4\) \( + \ldots + (n – 1)C_n^n – C_n^0\) \( = n{.2^{n – 1}} – {2^n}.\)
\( \Leftrightarrow C_n^2 + 2C_n^3 + 3C_n^4 + \ldots + (n – 1)C_n^n\) \( = n{.2^{n – 1}} – {2^n} + C_n^0\) \( = (n – 2){2^{n – 1}} + 1\) \( /> (n – 2){2^{n – 1}}.\)
Bài 15: Cho \(f(x) = x{\left( {{x^2} + 1} \right)^{2015}}.\)
a) Tính \(f'(1).\)
b) Tính \(S = 4031C_{2015}^0 + 4029C_{2015}^1\) \( + 4027C_{2015}^2 + \ldots + C_{2015}^{2015}.\)
Lời giải:
a) Ta có: \(f'(x) = {\left( {{x^2} + 1} \right)^{2015}}\) \( + 4030{x^2}{\left( {{x^2} + 1} \right)^{2014}}.\)
Suy ra: \(f'(1) = {\left( {{1^2} + 1} \right)^{2015}}\) \( + {4030.1^2}{\left( {{1^2} + 1} \right)^{2014}}\) \( = {2^{2015}} + {4030.2^{2014}}\) \( = {4032.2^{2014}}\) \( = {63.2^{2020}}\) \((1).\)
b) Mặt khác ta có:
\(f(x) = x{\left( {{x^2} + 1} \right)^{2015}}\) \( = x\left( {C_{2015}^0{x^{4030}} + C_{2015}^1{x^{4028}} + C_{2015}^2{x^{4026}} + \ldots + C_{2015}^{2015}} \right).\)
\( = C_{2015}^0{x^{4031}} + C_{2015}^1{x^{4029}}\) \( + C_{2015}^2{x^{4027}} + \ldots + C_{2015}^{2015}x.\)
Suy ra: \(f'(x) = 4031C_{2015}^0{x^{4030}}\) \( + 4029C_{2015}^1{x^{4028}}\) \( + 4027C_{2015}^2{x^{4026}}\) \( + \ldots + C_{2015}^{2015}.\)
\( \Rightarrow f'(1) = 4031C_{2015}^0 + 4029C_{2015}^1\) \( + 4027C_{2015}^2 + \ldots + C_{2015}^{2015}\) \((2).\)
Từ \((1)\) và \((2)\) suy ra: \(4031C_{2015}^0 + 4029C_{2015}^1\) \( + 4027C_{2015}^2 + \ldots + C_{2015}^{2015}\) \( = {63.2^{2020}}.\)
Vậy \(S = {63.2^{2020}}.\)
Bài 16: Tìm số nguyên dương \(n\) sao cho:
\(C_{2n + 1}^1 – 2.2C_{2n + 1}^2\) \( + {3.2^2}C_{2n + 1}^3 – {4.2^3}C_{2n + 1}^4\) \( + \ldots + (2n + 1){.2^{2n}}C_{2n + 1}^{2n + 1}\) \( = 2015.\)
Lời giải:
Xét khai triển: \({(1 + x)^{2n + 1}}\) \( = C_{2n + 1}^0 + C_{2n + 1}^1x\) \( + C_{2n + 1}^2{x^2} + C_{2n + 1}^3{x^3}\) \( + C_{2n + 1}^4{x^4} + \ldots + C_{2n + 1}^{2n + 1}{x^{2n + 1}}.\)
Đạo hàm hai vế ta được:
\((2n + 1){(1 + x)^{2n}}\) \( = C_{2n + 1}^1 + 2C_{2n + 1}^2x\) \( + 3C_{2n + 1}^3{x^2} + 4C_{2n + 1}^4{x^3}\) \( + \ldots + (2n + 1)C_{2n + 1}^{2n + 1}{x^{2n}}.\)
Chọn \(x= -2\) ta được:
\((2n + 1){(1 – 2)^{2n}}\) \( = C_{2n + 1}^1 – 2.2C_{2n + 1}^2x\) \( + {3.2^2}C_{2n + 1}^3 – {4.2^3}C_{2n + 1}^4\) \( + \ldots + (2n + 1){.2^{2n}}C_{2n + 1}^{2n + 1}.\)
\( \Leftrightarrow C_{2n + 1}^1 – 2.2C_{2n + 1}^2x\) \( + {3.2^2}C_{2n + 1}^3 – {4.2^3}C_{2n + 1}^4\) \( + \ldots + (2n + 1){.2^{2n}}C_{2n + 1}^{2n + 1}\) \( = 2n + 1.\)
Từ giả thiết suy ra: \(2n + 1 = 2015\) \( \Leftrightarrow n = 1007.\)
Bài 17: Chứng minh rằng: \(\frac{{C_n^1 + 2C_n^2 + 3C_n^3 + \ldots + nC_n^n}}{n} < n!\) với mọi \(n \in N\), \(n \ge 3.\)
Lời giải:
Xét khai triển: \({(1 + x)^n}\) \( = C_n^0 + C_n^1x\) \( + C_n^2{x^2} + \ldots + C_n^n{x^n}.\)
Đạo hàm hai vế của \((1)\) ta được: \(n{(1 + x)^{n – 1}}\) \( = C_n^1 + 2C_n^2x\) \( + 3C_n^3{x^2} + \ldots + nC_n^n{x^{n – 1}}.\)
Chọn \(x = 1\) ta được: \(C_n^1 + 2C_n^2 + 3C_n^3\) \( + \ldots + nC_n^n = n{.2^{n – 1}}.\)
\( \Leftrightarrow \frac{{C_n^1 + 2C_n^2 + 3C_n^3 + \ldots + nC_n^n}}{n} = {2^{n – 1}}.\)
Suy ra bài toán dẫn đến việc chứng minh: \({2^{n – 1}} < n!\) \((*)\) với mọi \(n \in N\), \(n \ge 3.\)
Ta chứng minh \((*)\) bằng phương pháp quy nạp như sau:
+ Với \(n=3\), thay vào \((*)\) thỏa mãn.
+ Giả sử \((*)\) đúng với \(n= k\) \((k /> 3)\), ta có: \({2^{k – 1}} < k!.\)
Ta cần chứng minh \((*)\) đúng với \(n=k+1\), tức là chứng minh: \({2^k} < (k + 1)!.\)
Thật vậy, ta có: \({2^k} = {2.2^{k – 1}}\) \( < 2.k! < (k + 1).k!\) \( = (k + 1)!.\)
Suy ra \((*)\) đúng với mọi \(n \in N\), \(n \ge 3.\)
Vậy \(\frac{{C_n^1 + 2C_n^2 + 3C_n^3 + \ldots + nC_n^n}}{n} < n!.\)
Bài toán tính tổng biểu thức tổ hợp có sử dụng đạo hàm là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán tính tổng biểu thức tổ hợp có sử dụng đạo hàm thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán tính tổng biểu thức tổ hợp có sử dụng đạo hàm, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán tính tổng biểu thức tổ hợp có sử dụng đạo hàm, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán tính tổng biểu thức tổ hợp có sử dụng đạo hàm là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: tính tổng biểu thức tổ hợp có sử dụng đạo hàm.