Bài viết hướng dẫn phương pháp giải bài toán tìm hệ số lớn nhất trong khai triển nhị thức Newton (Niu-tơn), đây là dạng toán thường gặp trong chương trình Đại số và Giải tích 11: Tổ hợp và Xác suất.
1. PHƯƠNG PHÁP GIẢI TOÁN
+ Áp dụng khai triển \({(a + b)^n}\) \( = \sum\limits_{k = 0}^n {C_n^k} {a^{n – k}}{b^k}.\)
+ Xác định số hạng tổng quát \(C_n^k{a^{n – k}}{b^k}\), suy ra hệ số tổng quát là một dãy số theo \({a_k}.\)
+ Xét tính tăng giảm của \({a_k}\) từ đó tìm \(k\) tương ứng.
+ Suy ra hệ số lớn nhất trong khai triển.
2. BÀI TẬP ÁP DỤNG
Bài 1: Cho khai triển: \({(1 + 2x)^n}\) \( = {a_0} + {a_1}x + \ldots + {a_n}{x^n}\), trong đó \(n \in {N^*}\) và các hệ số \({a_0}\), \({a_1}\), …, \({a_n}\) thỏa mãn \({a_0} + \frac{{{a_1}}}{2} + \ldots + \frac{{{a_n}}}{{{2^n}}} = 4096.\) Tìm số lớn nhất trong các số \({a_0}\), \({a_1}\), …, \({a_n}.\)
Lời giải:
Ta có: \({(1 + 2x)^n}\) \( = \sum\limits_{k = 0}^n {C_n^k} {2^k}{x^k}.\)
Chọn \(x = \frac{1}{2}\), ta được: \(\sum\limits_{k = 0}^n {C_n^k} = {2^n}.\)
Suy ra: \({a_0} + \frac{{{a_1}}}{2} + \ldots + \frac{{{a_n}}}{{{2^n}}}\) \( = \sum\limits_{k = 0}^n {C_n^k} \) \( \Leftrightarrow {2^n} = 4096\) \( \Leftrightarrow n = 12.\)
Xét số tổng quát trong khai triển là: \({a_k} = C_{12}^k{2^k}.\)
Xét dãy số \({a_k} = C_{12}^k{.2^k}\), ta có: \({a_{k + 1}} = C_{12}^{k + 1}{.2^{k + 1}}.\)
Xét \({a_k} – {a_{k + 1}} /> 0\) \( \Leftrightarrow C_{12}^k{.2^k} – C_{12}^{k + 1}{.2^{k + 1}} /> 0.\)
\( \Leftrightarrow \frac{{12!{2^k}}}{{k!(12 – k)!}} – \frac{{12!{2^{k + 1}}}}{{(k + 1)!(11 – k)!}} /> 0\) \( \Leftrightarrow \frac{{12!{2^k}}}{{k!(11 – k)!}}\left( {\frac{1}{{12 – k}} – \frac{2}{{k + 1}}} \right) /> 0.\)
\( \Leftrightarrow \frac{1}{{12 – k}} – \frac{2}{{k + 1}} /> 0\) \( \Leftrightarrow 3k – 23 /> 0\) \( \Leftrightarrow k /> \frac{{23}}{3} \approx 7,7.\)
Do đó \({a_8} /> {a_9} /> \ldots /> {a_{12}}.\)
Tương tự: \({a_k} – {a_{k + 1}} < 0\) \( \Leftrightarrow k < \frac{{23}}{3}.\)
Do đó \({a_8} /> {a_7} /> \ldots /> {a_0}.\)
Vậy \(\max \left( {{a_0},{a_1}, \ldots ,{a_n}} \right) = {a_8}\) \( = C_{12}^8{2^8} = 126720.\)
Bài 2: Tìm \(k \in \{ 0;1;2; \ldots ;2005\} \) sao cho \(C_{2005}^k\) đạt giá trị lớn nhất.
Lời giải:
Ta có: \(C_{2005}^k\) lớn nhất \( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{C_{2005}^k \ge C_{2005}^{k + 1}}\\
{C_{2005}^k \ge C_{2005}^{k – 1}}
\end{array}} \right.\) \((\forall k \in \{ 0;1;2; \ldots ;2005\} ).\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{\frac{{2005!}}{{k!(2005 – k)!}} \ge \frac{{2005!}}{{(k + 1)!(2004 – k)!}}}\\
{\frac{{2005!}}{{k!(2005 – k)!}} \ge \frac{{2005!}}{{(k – 1)!(2006 – k)!}}}
\end{array}} \right.\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{\frac{1}{{2005 – k}} \ge \frac{1}{{k + 1}}}\\
{\frac{1}{k} \ge \frac{1}{{2006 – k}}}
\end{array}} \right..\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{k + 1 \ge 2005 – k}\\
{2006 – k \ge k}
\end{array}} \right.\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{k \ge 1002}\\
{k \le 1003}
\end{array}} \right.\) \( \Leftrightarrow 1002 \le k \le 1003.\)
Vậy \(C_{2005}^k\) đạt giá trị lớn nhất khi và chỉ khi \(\left[ {\begin{array}{*{20}{l}}
{k = 1002}\\
{k = 1003}
\end{array}} \right..\)
Bài 3: Tìm hệ số lớn nhất trong khai triển nhị thức Newton của \({\left( {\frac{1}{3} + \frac{2}{3}x} \right)^{15}}.\)
Lời giải:
Ta có: \({\left( {\frac{1}{3} + \frac{2}{3}x} \right)^{15}}\) \( = \sum\limits_{k = 0}^{15} {C_{15}^k} {\left( {\frac{1}{3}} \right)^{15 – k}}\left( {\frac{2}{3}} \right){x^k}\) \( = \sum\limits_{k = 0}^{15} {C_{15}^k} \frac{{{2^k}}}{{{3^{15}}}}{x^k}.\)
Gọi \({a_k}\) là hệ số của \({x^k}\) trong khai triển, với \(k = \overline {0..15} .\)
Xét dãy số \({a_k} = \frac{1}{{{3^{15}}}}C_{15}^k{2^k}.\)
Ta có: \({a_{k + 1}} = \frac{1}{{{3^{15}}}}C_{15}^{k + 1}{.2^{k + 1}}.\)
Suy ra: \({a_k} < {a_{k + 1}}\) \( \Leftrightarrow \frac{1}{{{3^{15}}}}C_{15}^k{.2^k} < \frac{1}{{{3^{15}}}}C_{15}^{k + 1}{.2^{k + 1}}\) \( \Leftrightarrow \frac{{15!}}{{k!(15 – k)!}} < \frac{{15!}}{{(k + 1)!(14 – k)!}}.2.\)
\( \Leftrightarrow \frac{1}{{15 – k}} < \frac{2}{{k + 1}}\) \( \Leftrightarrow k + 1 < 30 – 2k\) \( \Leftrightarrow k < \frac{{29}}{3}.\)
Vậy \({a_0} < {a_1} < {a_2} < \ldots < {a_{10}}.\)
Ngược lại: \({a_k} /> {a_{k + 1}}\) \( \Leftrightarrow k /> \frac{{29}}{3}.\)
Suy ra: \({a_{10}} /> {a_{11}} /> {a_{12}} /> \ldots /> {a_{15}}.\)
Vậy hệ số lớn nhất trong khai triển trên là: \({a_{10}} = \frac{{{2^{10}}}}{{{3^{15}}}}C_{15}^{10} = 3003.\frac{{{2^{10}}}}{{{3^{15}}}}.\)
Bài 4: Trong khai triển của \({\left( {\frac{1}{3} + \frac{2}{3}x} \right)^{10}}\) thành đa thức \({a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_{10}}{x^{10}}\) \(\left( {{a_k} \in R} \right).\) Tìm hệ số \({a_k}\) lớn nhất \((0 \le k \le 10).\)
Lời giải:
Ta có: \({a_{k – 1}} \le {a_k}\) \( \Leftrightarrow C_{10}^{k – 1}{.2^{k – 1}} \le C_{10}^k{.2^k}\) \( \Leftrightarrow \frac{1}{{(k – 1)!(11 – k)!}} \le \frac{2}{{k!(10 – k)!}}.\)
\( \Leftrightarrow k \le 2(11 – k)\) \( \Leftrightarrow k \le \frac{{22}}{3}.\)
Vậy hệ số \({a_7}\) là lớn nhất: \({a_7} = \frac{1}{{{3^{10}}}}.C_{10}^7{.2^7}.\)
Bài 5: Cho \(n\) là số nguyên dương cố định. Chứng minh rằng \(C_n^k\) lớn nhất nếu \(k\) là một số tự nhiên lớn nhất không vượt quá \(\frac{{n + 1}}{2}.\)
Lời giải:
Ta có: \(C_n^k = \frac{{n!}}{{k!(n – k)!}}\) và \(C_n^{k – 1} = \frac{{n!}}{{(k – 1)!(n – k + 1)!}}\) \( \Rightarrow \frac{{C_n^k}}{{C_n^{k – 1}}} = \frac{{n – k + 1}}{k}.\)
Do đó: \(C_n^k /> C_n^{k – 1}\) \( \Leftrightarrow \frac{{n – k + 1}}{k} /> 1\) \( \Leftrightarrow k < \frac{{n + 1}}{2}.\)
Suy ra \(C_n^k\) lớn nhất nếu \(k\) là số tự nhiên lớn nhất không vượt quá \(\frac{{n + 1}}{2}.\)
Bài 6: Khai triển đa thức \(P(x) = {(1 + 2x)^{12}}\) thành dạng \(P(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_{12}}{x^{12}}.\) Hãy tìm \(\max \left( {{a_1},{a_2},{a_3}, \ldots ,{a_{12}}} \right).\)
Lời giải:
Ta có: \(P(x) = {(1 + 2x)^{12}}\) \( = \sum\limits_{k = 0}^{12} {C_{12}^k} .{(2x)^k}\) \( = \sum\limits_{k = 0}^{12} {C_{12}^k} {.2^k}.{x^k}.\)
Do đó: \({a_k} = C_{12}^k{.2^k}.\)
Xét dãy số \({a_k} = C_{12}^k{.2^k}\), \(k = \overline {1..12} .\)
Ta có: \({a_{k + 1}} = C_{12}^{k + 1}{.2^{k + 1}}.\)
Suy ra \({a_k} < {a_{k + 1}}\) \( \Leftrightarrow C_{12}^k{.2^k} < C_{12}^{k + 1}{.2^{k + 1}}\) \( \Leftrightarrow \frac{{12!}}{{k!(12 – k)!}}{.2^k} < \frac{{12!}}{{(k + 1)!(11 – k)!}}{.2^{k + 1}}.\)
\( \Leftrightarrow \frac{{12!}}{{k!(12 – k).(11 – k)!}}{.2^k}\) \( < \frac{{12!}}{{(k + 1).k!(11 – k)!}}{.2.2^k}\) \( \Leftrightarrow \frac{1}{{12 – k}} < \frac{2}{{k + 1}}\) \( \Leftrightarrow k < \frac{{23}}{3}.\)
Suy ra: \({a_0} < {a_1} < {a_2} < \ldots < {a_8}.\)
Ngược lại: \({a_k} /> {a_{k + 1}}\) \( \Leftrightarrow k /> \frac{{23}}{3}\) suy ra: \({a_8} /> {a_9} /> {a_{10}} /> {a_{11}} /> {a_{12}}.\)
Vậy với mọi \(k = \overline {1..12} \), \({a_k} \le {a_8}.\)
Vậy \(\max \left( {{a_1},{a_2},{a_3}, \ldots ,{a_{12}}} \right) = {a_8}\) \( = C_{12}^8{.2^8} = 126720.\)
Bài 7: Tìm hệ số lớn nhất trong khai triển: \({(3 + 2x)^8}.\)
Lời giải:
Ta có: \({(3 + 2x)^8}\) \( = \sum\limits_{k = 0}^8 {C_8^k} {3^{8 – k}}{2^k}{x^k}.\)
Hệ số tổng quát trong khai triển là: \({a_k} = C_8^k{3^{8 – k}}{2^k}.\)
Xét dãy số \({a_k} = C_8^k{3^{8 – k}}{2^k}\), \(k = \overline {0..8} .\)
Ta có: \({a_{k + 1}} = C_8^{k + 1}{3^{7 – k}}{2^{k + 1}}.\)
Xét \({a_k} – {a_{k + 1}} /> 0\) \( \Leftrightarrow C_8^k{3^{8 – k}}{2^k} – C_8^{k + 1}{3^{7 – k}}{2^{k + 1}} /> 0.\)
\( \Leftrightarrow {3^{7 – k}}{2^k}\left( {3C_8^k – 2C_8^{k + 1}} \right) /> 0\) \( \Leftrightarrow 3.\frac{{8!}}{{k!(8 – k)!}} – 2.\frac{{8!}}{{(k + 1)!(7 – k)!}} /> 0.\)
\( \Leftrightarrow \frac{{8!}}{{k!(7 – k)!}}\left( {\frac{3}{{8 – k}} – \frac{2}{{k + 1}}} \right) /> 0\) \( \Leftrightarrow \frac{{3k – 3 – 16 + 2k}}{{(8 – k)(k + 1)}} /> 0\) \( \Leftrightarrow k /> \frac{{19}}{5}.\)
Suy ra: \({a_4} /> {a_5} /> {a_6} /> {a_7} /> {a_8}.\)
Ngược lại: \({a_k} – {a_{k + 1}} < 0\) \( \Leftrightarrow k < \frac{{19}}{5}.\)
Suy ra: \({a_4} /> {a_3} /> {a_2} /> {a_1} /> {a_0}.\)
Vậy hệ số lớn nhất trong khai triển là: \({a_4} = C_8^4{3^4}{2^4} = 90720.\)
Bài 8: Tìm hệ số lớn nhất trong khai triển của \({(2 + 3x)^{2n}}\), trong đó \(n\) là số nguyên dương thỏa mãn: \(C_{2n + 1}^1 + C_{2n + 1}^3\) \( + C_{2n + 1}^5 + \ldots + C_{2n + 1}^{2n + 1}\) \( = 1024.\)
Lời giải:
Xét khai triển: \({(1 + x)^{2n + 1}}\) \( = C_{2n + 1}^0 + C_{2n + 1}^1x\) \( + C_{2n + 1}^2{x^2} + C_{2n + 1}^3{x^3}\) \( + \ldots + C_{2n + 1}^{2n + 1}{x^{2n + 1}}.\)
Chọn \(x= 1\), ta được: \(C_{2n + 1}^0 + C_{2n + 1}^1\) \( + C_{2n + 1}^2 + C_{2n + 1}^3\) \( + \ldots + C_{2n + 1}^{2n + 1} = {2^{2n + 1}}\) \((*).\)
Chọn \(x = – 1\), ta được: \(C_{2n + 1}^0 – C_{2n + 1}^1\) \( + C_{2n + 1}^2 – C_{2n + 1}^3\) \( + \ldots – C_{2n + 1}^{2n + 1} = 0.\)
Từ \((*)\) suy ra: \(2\left( {C_{2n + 1}^1 + C_{2n + 1}^3 + C_{2n + 1}^5 + \ldots + C_{2n + 1}^{2n + 1}} \right)\) \( = {2^{2n + 1}}.\)
\( \Leftrightarrow C_{2n + 1}^1 + C_{2n + 1}^3 + C_{2n + 1}^5 + \ldots + C_{2n + 1}^{2n + 1} = {2^{2n}}.\)
Theo giả thiết ta có: \({2^{2n}} = 1024 = {2^{10}}\) \( \Leftrightarrow n = 5.\)
Từ đó suy ra: \({(2 + 3x)^{2n}}\) \( = {(2 + 3x)^{10}}\) \( = \sum\limits_{k = 0}^{10} {C_{10}^k} {2^{10 – k}}{(3x)^k}\) \( = \sum\limits_{k = 0}^{10} {{3^k}} .C_{10}^k{2^{10 – k}}{x^k}.\)
Xét dãy số \({a_k} = {3^k}.C_{10}^k{2^{10 – k}}\), \(k = \overline {0..10} .\)
Ta có: \({a_{k + 1}} = {3^{k + 1}}.C_{10}^{k + 1}{2^{9 – k}}.\)
Ta có: \({a_k} /> {a_{k + 1}}\) \( \Leftrightarrow {a_k} – {a_{k + 1}} /> 0\) \( \Leftrightarrow {3^k}.C_{10}^k{2^{10 – k}} – {3^{k + 1}}.C_{10}^{k + 1}{2^{9 – k}} /> 0.\)
\( \Leftrightarrow {3^k}{2^{9 – k}}\left( {2C_{10}^k – 3C_{10}^{k + 1}} \right) /> 0\) \( \Leftrightarrow 2.\frac{{10!}}{{k!(10 – k)!}} – 3.\frac{{10!}}{{(k + 1)!(9 – k)!}} /> 0.\)
\( \Leftrightarrow \frac{{10!}}{{k!(9 – k)!}}\left( {\frac{2}{{10 – k}} – \frac{3}{{k + 1}}} \right) /> 0\) \( \Leftrightarrow \frac{{10!}}{{k!(9 – k)!}}\left( {\frac{{5k – 28}}{{(10 – k)(k + 1)}}} \right) /> 0\) \( \Leftrightarrow k /> \frac{{28}}{5}.\)
Suy ra: \({a_6} /> {a_7} /> \ldots /> {a_{10}}.\)
Ngược lại: \({a_k} < {a_{k + 1}}\) \( \Leftrightarrow k < \frac{{28}}{5}.\)
Suy ra: \({a_6} /> {a_7} /> … /> {a_{10}}.\)
Ngược lại: \({a_k} < {a_{k + 1}}\) \( \Leftrightarrow k < \frac{{28}}{5}.\)
Suy ra: \({a_6} /> {a_5} /> … /> {a_0}.\)
Vậy hệ số lớn nhất trong khai triển là: \({a_6} = {3^6}.C_{16}^6{2^4} = 2449440.\)
Bài 9: Tìm hệ số có giá trị lớn nhất của khai triển: \({(1 + x)^n}\), biết rằng tổng các hệ số bằng \(4096.\)
Lời giải:
Xét khai triển \({(1 + x)^n} = \sum\limits_{k = 0}^n {C_n^k} {x^k}.\)
Chọn \(x = 1\), ta được: \(\sum\limits_{k = 0}^n {C_n^k} = {2^n}.\)
Theo giả thiết ta có: \({2^n} = 4096\) \( \Leftrightarrow n = 12.\)
Suy ra: \({(1 + x)^n}\) \( = {(1 + x)^{12}}\) \( = \sum\limits_{k = 0}^{12} {C_{12}^k} {x^k}.\)
Xét dãy số \({a_k} = C_{12}^k.\)
Ta có: \({a_k} \ge {a_{k + 1}}\) \( \Leftrightarrow C_{12}^k \ge C_{12}^{k + 1}\) \( \Leftrightarrow \frac{{12!}}{{k!(12 – k)!}} \ge \frac{{12!}}{{(k + 1)!(11 – k)!}}.\)
\( \Leftrightarrow \frac{{12!}}{{k!(12 – k)(11 – k)!}} \ge \frac{{12!}}{{(k + 1)k!(11 – k)!}}\) \( \Leftrightarrow \frac{1}{{(12 – k)}} \ge \frac{1}{{(k + 1)}}\) \( \Leftrightarrow k \ge \frac{{13}}{2}.\)
Suy ra: \({a_7} \ge {a_8} \ge \ldots \ge {a_{12}}.\)
Ngược lại: \({a_k} \le {a_{k + 1}}\) \( \Leftrightarrow k \le \frac{{13}}{2}.\)
Suy ra: \({a_7} \ge {a_6} \ge \ldots \ge {a_0}.\)
Vậy hệ số lớn nhất trong khai triển là: \({a_7} = C_{12}^7 = 792.\)
Bài toán tìm hệ số lớn nhất trong khai triển là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán tìm hệ số lớn nhất trong khai triển thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán tìm hệ số lớn nhất trong khai triển, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán tìm hệ số lớn nhất trong khai triển, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán tìm hệ số lớn nhất trong khai triển là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: tìm hệ số lớn nhất trong khai triển.