Logo Header
  1. Môn Toán
  2. khoảng cách giữa hai đường thẳng chéo nhau

khoảng cách giữa hai đường thẳng chéo nhau

Bài viết trình bày phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau trong không gian, đây là dạng toán thường gặp trong chương trình hình Hình học 11 chương 3 – quan hệ vuông góc, kiến thức và các ví dụ trong bài viết được tham khảo từ chuyên mục hình học không gian đăng trên https://giaibaitoan.com.

Để tính khoảng cách giữa hai đường thẳng chéo nhau \(Δ\) và \(Δ’\), ta sử dụng các phương pháp sau đây:

Phương pháp 1: Chọn mặt phẳng \((α)\) chứa đường thẳng \(Δ\) và song song với \(Δ’\). Khi đó \(d(\Delta ,\Delta’) = d(\Delta’,(\alpha ))\).

khoảng cách giữa hai đường thẳng chéo nhau

Ví dụ 1: Cho hình chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\), đáy \(ABCD\) là hình chữ nhật với \(AC = a\sqrt 5 \) và \(BC = a\sqrt 2\). Tính khoảng cách giữa \(SD\) và \(BC.\)

khoảng cách giữa hai đường thẳng chéo nhau

Ta có \(BC // (SAD).\)

Suy ra \(d\left( {BC;SD} \right) = d\left( {BC;\left( {SAD} \right)} \right)\) \( = d\left( {B;\left( {SAD} \right)} \right).\)

Mà \(\left\{ \begin{array}{l}

AB \bot AD\\

AB \bot SA

\end{array} \right. \Rightarrow AB \bot \left( {SAD} \right)\) \( \Rightarrow d\left( {B;\left( {SAD} \right)} \right) = AB.\)

Ta có \(AB = \sqrt {A{C^2} – B{C^2}} \) \( = \sqrt {5{a^2} – 2{a^2}} = \sqrt 3 a.\)

Ví dụ 2: Cho hình lăng trụ đứng \(ABC.A’B’C’\) có đáy là tam giác vuông tại \(B\), \(AB = BC = a\), cạnh bên \({\rm{AA}}’ = \sqrt 2.\) Gọi \(M\) là trung điểm của \(BC\). Tính \(d\left( {AM;B’C} \right)\).

khoảng cách giữa hai đường thẳng chéo nhau

Trước hết ta đi dựng \(1\) mặt phẳng chứa đường này và song song với đường kia để chuyển về khoảng cách từ \(1\) điểm đến mặt phẳng. Lấy \(E\) là trung điểm \(BB’.\)

\( \Rightarrow ME//CB’ \Rightarrow CB’//(AME).\)

\( \Rightarrow d(AM;B’C) = d(B’C;(AME))\) \( = d(C;(AME)) = d(B;(AME)).\)

Mà tứ diện \(BAME\) vuông ở \(B\) nên:

\(\frac{1}{{{d^2}(B;(AME))}}\) \( = \frac{1}{{B{M^2}}} + \frac{1}{{B{E^2}}} + \frac{1}{{B{A^2}}}\) \( = \frac{1}{{{{\left( {\frac{a}{2}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}}} + \frac{1}{{{a^2}}}\) \( = \frac{4}{{{a^2}}} + \frac{4}{{2{a^2}}} + \frac{1}{{{a^2}}} = \frac{7}{{{a^2}}}.\)

\( \Rightarrow d(B;(AME)) = \frac{a}{{\sqrt 7 }}\) \( = d(AM;B’C).\)

Phương pháp 2: Dựng hai mặt phẳng song song và lần lượt chứa hai đường thẳng. Khoảng cách giữa hai mặt phẳng đó là khoảng cách cần tìm.

khoảng cách giữa hai đường thẳng chéo nhau

Ta có \(d(Δ,Δ’) = d((α),(β)).\)

Ví dụ 3: Hình hộp chữ nhật \(ABCD.A’B’C’D’\) có \(AB = 3\), \(AD = 4\), \(AA’ = 5\). Khoảng cách giữa hai đường thẳng \(AC\) và \(B’D’\) bằng bao nhiêu?

khoảng cách giữa hai đường thẳng chéo nhau

Ta có:

\((ABCD) // (A’B’C’D’).\)

\(AC ⊂ (ABCD)\) và \(B’D’ ⊂ (A’B’C’D’).\)

Nên \(d(AC,B’D’) = d((ABCD),(A’B’C’D’)\) \(= AA’ = 5.\)

[ads]

Phương pháp 3: Dựng đoạn vuông góc chung và tính độ dài đoạn đó. Ta xét 2 trường hợp sau:

1. Trường hợp 1: \(Δ\) và \(Δ’\) vừa chéo nhau vừa vuông góc với nhau

+ Bước 1: Chọn mặt phẳng \((α)\) chứa \(Δ’\) và vuông góc với \(Δ\) tại \(I.\)

+ Bước 2: Trong mặt phẳng \((α)\) kẻ \(IJ \bot \Delta’\).

Khi đó \(IJ\) là đoạn vuông góc chung của hai đường thẳng \(Δ\) và \(Δ’\), và \(d(\Delta ,\Delta’) = IJ\).

khoảng cách giữa hai đường thẳng chéo nhau

Ví dụ 4: Cho hình lập phương \(ABCD.A’B’C’D’\) cạnh bằng \(a\). Xác định đoạn vuông góc chung và tính khoảng cách giữa hai đường thẳng \(AD’\) và \(A’B’\) bằng bao nhiêu?

khoảng cách giữa hai đường thẳng chéo nhau

Ta có \(A’B’ \bot \left( {ADD’A’} \right).\)

Gọi \(H\) là giao điểm của \(AD’\) với \(A’D\). Vì \(ADD’A’\) là hình vuông nên \(A’H \bot AD’.\)

Ta có \(\left\{ \begin{array}{l}

A’H \bot AD’\\

A’H \bot A’B’

\end{array} \right.\), suy ra \(A’H\) là đoạn vuông góc chung của hai đường thẳng \(AD’\) và \(A’B’.\)

\(d\left( {A’B’;AD’} \right) = A’H = \frac{{a\sqrt 2 }}{2}.\)

2. Trường hợp 2: \(Δ\) và \(Δ’\) chéo nhau mà KHÔNG vuông góc với nhau

Ta dựng đoạn vuông góc chung của hai đường thẳng \(Δ\) và \(Δ’\) theo một trong hai cách sau đây:

Cách 1:

+ Bước 1: Chọn mặt phẳng \((α)\) chứa \(Δ’\) và song song với \(Δ.\)

+ Bước 2: Dựng \(d\) là hình chiếu vuông góc của \(Δ\) xuống \((α)\) bằng cách lấy điểm \(M \in \Delta \) dựng đoạn \(MN \bot \left( \alpha \right)\), lúc đó \(d\) là đường thẳng đi qua \(N\) và và song song với \(Δ.\)

+ Bước 3: Gọi \(H = d \cap \Delta’\), dựng \(HK\parallel MN\).

Khi đó \(HK\) là đoạn vuông góc chung của \(Δ\) và \(Δ’\), và \(d(\Delta ,\Delta’) = HK = MN\).

khoảng cách giữa hai đường thẳng chéo nhau

Cách 2:

+ Bước 1: Chọn mặt phẳng \((α) ⊥ Δ\) tại \(I.\)

+ Bước 2: Tìm hình chiếu \(d\) của \(Δ’\) xuống mặt phẳng \((α).\)

+ Bước 3: Trong mặt phẳng \((α)\), dựng \(IJ \bot d\), từ \(J\) dựng đường thẳng song song với \(Δ\) cắt \(Δ’\) tại \(H\), từ \(H\) dựng \(HM\parallel IJ\).

Khi đó \(HM\) là đoạn vuông góc chung của hai đường thẳng \(Δ\) và \(Δ’\), và \(d(\Delta ,\Delta ‘) = HM = IJ\).

khoảng cách giữa hai đường thẳng chéo nhau

Ví dụ 5: Cho hình chóp \(SABC\) có \(SA = 2a\) và vuông góc với mặt phẳng \((ABC)\), đáy \(ABC\) là tam giác vuông cân tại \(B\) với \(AB = a\). Gọi \(M\) là trung điểm của \(AC.\)

1. Hãy dựng đoạn vuông góc chung của \(SM\) và \(BC.\)

2. Tính độ dài đoạn vuông góc chung của \(SM\) và \(BC.\)

khoảng cách giữa hai đường thẳng chéo nhau

1. Để dựng đoạn vuông góc chung của \(SM\) và \(BC\) ta có thể lựa chọn 1 trong 2 cách sau:

Cách 1: Gọi \(N\) là trung điểm của \(AB\), suy ra: \(BC//MN \Rightarrow BC//\left( {SMN} \right).\)

Ta có: \(\left\{ \begin{array}{l}

MN \bot AB\\

MN \bot SA

\end{array} \right. \Rightarrow MN \bot \left( {SAB} \right)\) \( \Rightarrow \left( {SMN} \right) \bot \left( {SAB} \right).\)

\(\left( {SMN} \right) \cap \left( {SAB} \right) = SN.\)

Hạ \(BH \bot SN \Rightarrow BH \bot \left( {SMN} \right).\)

Từ \(H\) dựng \(Hx\) song song với \(BC\) và cắt \(SM\) tại \(E\). Từ \(E\) dựng \(Ey\) song song với \(BH\) và cắt \(BC\) tại \(F\). Đoạn \(EF\) là đoạn vuông góc chung của \(SM\) và \(BC.\)

Cách 2: Nhận xét rằng: \(\left\{ \begin{array}{l}

BC \bot AB\\

BC \bot SA

\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right).\)

Do đó \((SAB)\) chính là mặt phẳng qua \(B\) thuộc \(BC\) và vuông góc với \(BC.\)

Gọi \(N\) là trung điểm của \(AB\) suy ra: \(MN//BC \Rightarrow MN \bot \left( {SAB} \right)\).

Suy ra \(MN\) là hình chiếu vuông góc của \(SM\) trên \((SAB).\)

Hạ \(BH \bot SN \Rightarrow BH \bot \left( {SMN} \right)\).

Từ \(H\) dựng \(Hx\) song song với \(BC\) và cắt \(SM\) tại \(E\). Từ \(E\) dựng \(Ey\) song song với \(BH\) và cắt \(BC\) tại \(F.\)

Đoạn \(EF\) là đoạn vuông góc chung của \(SM\) và \(BC.\)

2. Nhận xét rằng tam giác \(SAN\) và tam giác \(BHN\) là \(2\) tam giác vuông có \(2\) góc nhọn đối đỉnh nên chúng đồng dạng, suy ra:

\(\frac{{BH}}{{SA}} = \frac{{BN}}{{SN}} \Rightarrow BH = \frac{{SA.BN}}{{SN}}.\)

Trong đó: \(BN = \frac{1}{2}AB = \frac{a}{2}.\)

\(S{N^2} = S{A^2} + A{N^2}\) \( = {\left( {2a} \right)^2} + {\left( {\frac{a}{2}} \right)^2} = \frac{{17{a^2}}}{4}\) \( \Rightarrow SN = \frac{{a\sqrt {17} }}{2}.\)

Suy ra: \(BH = \frac{{2a.\frac{a}{2}}}{{\frac{{a\sqrt {17} }}{2}}} = \frac{{2a\sqrt {17} }}{{17}}.\)

Vậy khoảng cách giữa \(SM\) và \(BC\) bằng \(\frac{{2a\sqrt {17} }}{{17}}\).

BÀI TẬP TỰ LUYỆN

Bài toán 1: Cho tứ diện \(ABCD\) có \(AB = x\), \(CD = b\), các cạnh còn lại đều bằng \(a.\) Gọi

\(E\) và \(F\) lần lượt là trung điểm \(AB\) và \(CD.\)

a) Chứng minh \(AB \bot CD\) và \(EF\) là đường vuông góc chung của \(AB\) và \(CD.\) Tính \(EF\) theo \(a\), \(b\), \(x\).

b) Tìm \(x\) để hai mặt phẳng \((ACD)\) và \((BCD)\) vuông góc.

Bài toán 2: Cho hình vuông \(ABCD.\) Gọi \(I\) là trung điểm \(AB.\) Vẽ \(SI \bot (ABCD)\) với \(SI = \frac{{a\sqrt 3 }}{2}\). Gọi \(M\), \(N\), \(K\) lần lượt là trung điểm \(BC\), \(SD\), \(SB.\) Dựng và tính đoạn vuông góc chung của:

a) \(NK\) và \(AC.\)

b) \(MN\) và \(AK.\)

Bài toán 3: Cho hình lập phương \(ABCD.A’B’C’D’\) cạnh \(a.\)

a) Tính theo \(a\) khoảng cách giữa hai đường thẳng \(A’B\) và \(DB’.\)

b) Gọi \(M\), \(N\), \(P\) lần lượt là trung điểm \(BB’\), \(CD\), \(A’D’.\) Tính góc của hai đường thẳng \(MP\) và \(C’N.\)

Bài toán 4: Cho hình lăng trụ đứng \(ABC.A’B’C’\), có tất cả các cạnh đều bằng \(a.\) Gọi \(M\) là trung điểm \(AA’.\) Chứng minh \(BM\) vuông góc \(B’C.\) Tính khoảng cách của hai đường \(BM\) và \(B’C.\)

Bài toán 5: Cho hai hình chữ nhật \(ABCD\), \(ABEF\) không cùng thuộc một mặt phẳng và \(AB = a\), \(AD = AF = a\sqrt 2 \), \(AC\) vuông góc \(BF.\)

a) Gọi \(I\) là giao điểm của \(DF\) với mặt phẳng chứa \(AC\) và song song \(BF.\) Tính \(\frac{{DI}}{{DF}}.\)

b) Tính khoảng cách giữa \(AC\) và \(BF.\)

Giải bài toán khoảng cách giữa hai đường thẳng chéo nhau: Phương Pháp, Mẹo Học Hiệu Quả và Ví Dụ Chi Tiết

Bài toán khoảng cách giữa hai đường thẳng chéo nhau là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.

1. Tầm Quan Trọng Của Việc Giải Bài Toán khoảng cách giữa hai đường thẳng chéo nhau

Bài toán khoảng cách giữa hai đường thẳng chéo nhau thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.

  • Rèn luyện tư duy logic: Việc giải các bài toán thuộc dạng này giúp bạn phát triển khả năng tư duy phân tích, nhận biết mối quan hệ giữa các yếu tố trong bài toán.
  • Củng cố kiến thức: Qua quá trình luyện tập, bạn sẽ hiểu sâu hơn về các công thức, định lý, và phương pháp áp dụng.
  • Chuẩn bị cho kỳ thi: Việc làm quen với dạng bài này sẽ giúp bạn tự tin hơn khi bước vào phòng thi.

2. Phương Pháp Giải Bài Toán khoảng cách giữa hai đường thẳng chéo nhau

Để giải hiệu quả bài toán khoảng cách giữa hai đường thẳng chéo nhau, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:

Bước 1: Hiểu Đề Bài

  • Đọc kỹ đề bài để nắm bắt yêu cầu chính xác.
  • Xác định các yếu tố đã cho và cần tìm.
  • Phân tích mối liên hệ giữa các yếu tố.

Bước 2: Lựa Chọn Phương Pháp Giải

Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:

  • Phương pháp trực tiếp: Sử dụng các công thức hoặc định lý có sẵn để giải bài.
  • Phương pháp gián tiếp: Biến đổi bài toán về một dạng quen thuộc hoặc dễ xử lý hơn.
  • Sử dụng đồ thị: Trong trường hợp bài toán liên quan đến hàm số hoặc biểu đồ.

Bước 3: Triển Khai Lời Giải

  • Áp dụng công thức và phương pháp đã chọn.
  • Trình bày các bước giải rõ ràng, logic.
  • Kiểm tra lại từng bước để đảm bảo không có sai sót.

Bước 4: Kiểm Tra Kết Quả

  • So sánh kết quả với yêu cầu đề bài.
  • Đánh giá xem lời giải có đáp ứng đầy đủ yêu cầu chưa.

3. Những Mẹo Học Hiệu Quả Khi Giải Bài Toán khoảng cách giữa hai đường thẳng chéo nhau

Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:

Mẹo 1: Nắm Vững Kiến Thức Cơ Bản

Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.

Mẹo 2: Luyện Tập Thường Xuyên

Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.

Mẹo 3: Phân Tích Sai Lầm

Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.

Mẹo 4: Sử Dụng Tài Liệu Tham Khảo

Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.

4. Ví Dụ Chi Tiết Về Bài Toán khoảng cách giữa hai đường thẳng chéo nhau

Ví Dụ 1: Đề Bài Cụ Thể

Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”

Lời Giải:

  • 1. Phân tích đề bài: [Chi tiết phân tích các yếu tố]
  • 2. Sử dụng phương pháp: [Phương pháp áp dụng và lý do chọn phương pháp này]
  • 3. Triển khai từng bước:
    • Bước 1: [Mô tả bước đầu tiên]
    • Bước 2: [Mô tả bước tiếp theo]

4. Kết quả cuối cùng: [Đáp án và kiểm tra lại đáp án].

Ví Dụ 2: Bài Tập Nâng Cao

Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:

  • Đề bài: “Chứng minh rằng [nội dung đề bài nâng cao].”
  • Gợi ý lời giải: [Cách tiếp cận và các bước triển khai chi tiết].

5. Tài Liệu Hỗ Trợ Học Tập

Nếu bạn cần thêm tài liệu tham khảo để giải bài toán khoảng cách giữa hai đường thẳng chéo nhau, dưới đây là một số nguồn hữu ích:

  • Sách tham khảo: Các sách chuyên đề về toán học.
  • Website học toán: Những trang web uy tín cung cấp bài tập và lời giải chi tiết.
  • Video bài giảng: Các kênh YouTube hoặc khóa học trực tuyến giúp bạn hiểu sâu hơn về phương pháp giải.

6. Lời Khuyên Từ Chuyên Gia

Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.

7. Kết Luận

Bài toán khoảng cách giữa hai đường thẳng chéo nhau là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.

Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!

>> Xem thêm đáp án chi tiết về: khoảng cách giữa hai đường thẳng chéo nhau.