Logo Header
  1. Môn Toán
  2. tìm giới hạn dãy số bằng định nghĩa

tìm giới hạn dãy số bằng định nghĩa

Bài viết hướng dẫn phương pháp tìm giới hạn dãy số bằng định nghĩa, giúp học sinh học tốt chương trình Đại số và Giải tích 11 chương 4: giới hạn.

I. PHƯƠNG PHÁP

+ Để chứng minh \(\lim {u_n} = 0\) ta chứng minh với mọi số \(a />0\) nhỏ tùy ý, luôn tồn tại một số \({n_a}\) sao cho \(\left| {{u_n}} \right| < a\), \(\forall n /> {n_a}.\)

+ Để chứng minh \(\lim {u_n} = l\) ta chứng minh \(\lim \left( {{u_n} – l} \right) = 0.\)

+ Để chứng minh \(\lim {u_n} = + \infty \) ta chứng minh với mọi số \(M /> 0\) lớn tùy ý, luôn tồn tại số tự nhiên \({n_M}\) sao cho \({u_n} /> M\), \(\forall n /> {n_M}.\)

+ Để chứng minh \(\lim {u_n} = – \infty \) ta chứng minh \(\lim \left( { – {u_n}} \right) = + \infty .\)

+ Một dãy số nếu có giới hạn thì giới hạn đó là duy nhất.

II. CÁC VÍ DỤ

Ví dụ 1. Chứng minh rằng:

1. \(\lim \frac{{n + 2}}{{n + 1}} = 1.\)

2. \(\lim \frac{{{n^2} – 1}}{{2{n^2} + 1}} = \frac{1}{2}.\)

3. \(\lim \frac{{1 – 2n}}{{\sqrt {{n^2} + 1} }} = – 2.\)

Lời giải:

1. Với \(a /> 0\) nhỏ tùy ý, ta chọn \({n_a} /> \frac{1}{a} – 1\), ta có: \(\left| {\frac{{n + 2}}{{n + 1}} – 1} \right| = \frac{1}{{n + 1}}\) \( < \frac{1}{{{n_a} + 1}} < a\) với \(\forall n /> {n_a}.\)

Suy ra \(\lim \left| {\frac{{n + 2}}{{n + 1}} – 1} \right| = 0\) \( \Rightarrow \lim \frac{{n + 2}}{{n + 1}} = 1.\)

2. Với \(a /> 0\) nhỏ tùy ý, ta chọn \({n_a} /> \sqrt {\frac{3}{a} – 1} \), ta có:

\(\left| {\frac{{{n^2} – 1}}{{2{n^2} + 1}} – \frac{1}{2}} \right| = \frac{3}{{{n^2} + 1}}\) \( < \frac{3}{{n_a^2 + 1}} < a\) với \(\forall n /> {n_a}.\)

Suy ra \(\lim \left| {\frac{{{n^2} – 1}}{{2{n^2} + 1}} – \frac{1}{2}} \right| = 0\) \( \Rightarrow \lim \frac{{{n^2} – 1}}{{2{n^2} + 1}} = \frac{1}{2}.\)

3. Với \(a /> 0\) nhỏ tùy ý, ta chọn \({n_a} /> \sqrt {\frac{9}{{{a^2}}} – 1} \), ta có:

\(\left| {\frac{{1 – 2n}}{{\sqrt {{n^2} + 1} }} + 2} \right|\) \( = \left| {\frac{{1 – 2n + 2\sqrt {{n^2} + 1} }}{{\sqrt {{n^2} + 1} }}} \right|\) \( < \left| {\frac{{1 – 2n + 2(n + 1)}}{{\sqrt {{n^2} + 1} }}} \right|\) \( = \frac{3}{{\sqrt {{n^2} + 1} }}\) \( < \frac{3}{{\sqrt {n_a^2 + 1} }} < a\) với \(\forall n /> {n_a}.\)

Suy ra \(\lim \left| {\frac{{1 – 2n}}{{\sqrt {{n^2} + 1} }} + 2} \right| = 0\) \( \Rightarrow \lim \frac{{1 – 2n}}{{\sqrt {{n^2} + 1} }} = – 2.\)

Ví dụ 2. Chứng minh rằng dãy số \(\left( {{u_n}} \right)\): \({u_n} = {( – 1)^n}\) không có giới hạn.

Lời giải:

Ta có: \({u_{2n}} = 1\) \( \Rightarrow \lim {u_{2n}} = 1\); \({u_{2n + 1}} = – 1\) \( \Rightarrow \lim {u_{2n + 1}} = – 1.\)

Vì giới hạn của dãy số nếu có là duy nhất nên ta suy ra dãy \(\left( {{u_n}} \right)\) không có giới hạn.

Ví dụ 3. Chứng minh các giới hạn sau:

1. \(\lim \frac{{{n^2} + 1}}{n} = + \infty .\)

2. \(\lim \frac{{2 – n}}{{\sqrt n }} = – \infty .\)

Lời giải:

1. Với mọi số thực dương \(M\) lớn tùy ý, ta có:

\(\left| {\frac{{{n^2} + 1}}{n}} \right| /> M\) \( \Leftrightarrow {n^2} – Mn + 1 /> 0\) \( \Leftrightarrow n /> \frac{{M + \sqrt {{M^2} – 4} }}{2}.\)

Ta chọn \({n_0} = \left[ {\frac{{M + \sqrt {{M^2} – 4} }}{2}} \right]\) thì ta có: \(\frac{{{n^2} + 1}}{n} /> M\), \(\forall n /> {n_0}.\)

Do đó: \(\lim \frac{{{n^2} + 1}}{n} = + \infty .\)

2. Với mọi \(M /> 0\) lớn tùy ý, ta có:

\(\frac{{n – 2}}{{\sqrt n }} /> M\) \( \Leftrightarrow n – M\sqrt n – 2 /> 0\) \( \Leftrightarrow n /> {\left( {\frac{{M + \sqrt {{M^2} + 8} }}{2}} \right)^2}.\)

Ta chọn \({n_0} = \left[ {{{\left( {\frac{{M + \sqrt {{M^2} + 8} }}{2}} \right)}^2}} \right]\) thì ta có: \(\frac{{n – 2}}{{\sqrt n }} /> M\), \(\forall n /> {n_0}.\)

Do đó: \(\lim \frac{{2 – n}}{{\sqrt n }} = – \infty .\)

III. CÁC BÀI TOÁN LUYỆN TẬP

Bài 1. Chứng minh rằng:

1. \(\lim \frac{1}{{{n^k}}} = 0\) \(\left( {k \in {N^*}} \right).\)

2. \(\lim \frac{{1 – {n^2}}}{n} = – \infty .\)

Lời giải:

1. Với \(a /> 0\) nhỏ tùy ý, ta chọn: \({n_a} /> \sqrt[k]{{\frac{1}{a}}}\), ta có: \(\frac{1}{{{n^k}}} < \frac{1}{{n_a^k}} < a\), \(\forall n /> {n_a}\) nên có \(\lim \frac{1}{{{n^k}}} = 0.\)

2. Với mọi số dương \(M\) lớn tùy ý ta chọn \({n_M}\) thỏa mãn \(\frac{{n_M^2 – 1}}{{{n_M}}} /> M\) \( \Leftrightarrow {n_M} /> \frac{{M + \sqrt {{M^2} + 4} }}{2}.\)

Ta có: \(\frac{{{n^2} – 1}}{n} /> M\), \(\forall n /> {n_M}\) \( \Rightarrow \lim \frac{{{n^2} – 1}}{n} = + \infty .\)

Vậy \(\lim \frac{{1 – {n^2}}}{n} = – \infty .\)

Bài 2. Chứng minh các giới hạn sau:

1. \(\lim \frac{{\cos n + \sin n}}{{{n^2} + 1}} = 0.\)

2. \(\lim \frac{{\sqrt {n + 1} }}{{n + 2}} = 0.\)

3. \(\lim \frac{{3{n^3} + n}}{{{n^2}}} = + \infty .\)

Lời giải:

1. Ta có \(\frac{{|\cos n + \sin n|}}{{{n^2}}} < \frac{2}{{{n^2}}}\) mà \(\lim \frac{1}{{{n^2}}} = 0\) \( \Rightarrow \lim \frac{{\cos n + \sin n}}{{{n^2} + 1}} = 0.\)

2. Với mọi số thực \(a/>0\) nhỏ tùy ý, ta chọn \({n_a} = \left[ {\frac{1}{{{a^2}}} – 1} \right] + 1.\)

Ta có: \(\frac{{\sqrt {n + 1} }}{{n + 2}} < \frac{1}{{\sqrt {n + 1} }} < a\), \(\forall n /> {n_a}\) \( \Rightarrow \lim \frac{{\sqrt {n + 1} }}{{n + 2}} = 0.\)

3. Với mọi \(M /> 0\) lớn tùy ý, ta chọn \({n_M} = \left[ {\frac{M}{3}} \right] + 1.\)

Ta có: \(\frac{{3{n^3} + n}}{{{n^2}}} = 3n + \frac{1}{n} /> M\), \(\forall n /> {n_M}.\) Vậy \(\lim \frac{{3{n^3} + n}}{{{n^2}}} = + \infty .\)

Bài 3. Dùng định nghĩa tìm các giới hạn sau:

1. \(A = \lim \frac{{2n + 1}}{{n – 2}}.\)

2. \(B = \lim \frac{{2n + 3}}{{{n^2} + 1}}.\)

Lời giải:

1. Với số thực \(a/>0\) nhỏ tùy ý, ta chọn \({n_a} /> \frac{5}{a} + 2 /> 2.\)

Ta có: \(\left| {\frac{{2n + 1}}{{n – 2}} – 2} \right| = \frac{5}{{|n – 2|}}\) \( < \frac{5}{{{n_a} – 2}} < a\), \(\forall n /> {n_a}.\)

Vậy \(A=2.\)

2. Với số thực \(a /> 0\) nhỏ tùy ý, ta chọn \({n_a}\) thỏa mãn: \(\frac{{2{n_a} + 3}}{{n_a^2 + 1}} < a\) \( \Leftrightarrow {n_a} /> \frac{{1 + \sqrt {{a^2} – 4a + 13} }}{a}.\)

Ta có: \(\frac{{2n + 3}}{{{n^2} + 1}} < a\), \(\forall n /> {n_a}\) \( \Rightarrow B = 0.\)

Bài 4. Chứng minh các giới hạn sau:

1. \(\lim \frac{{{a^n}}}{{n!}} = 0.\)

2. \(\lim \sqrt[n]{a} = 1\) với \(a />0.\)

Lời giải:

1. Gọi \(m\) là số tự nhiên thỏa mãn: \(m + 1 /> |a|.\) Khi đó với mọi \(n /> m + 1.\)

Ta có: \(0 < \left| {\frac{{{a^n}}}{{n!}}} \right|\) \( = \left| {\frac{a}{1}.\frac{a}{2} \ldots \frac{a}{m}} \right|.\left| {\frac{a}{{m + 1}} \ldots \frac{a}{n}} \right|\) \( < \frac{{|a{|^m}}}{{m!}}.{\left( {\frac{{|a|}}{{m + 1}}} \right)^{n – m}}.\)

Mà \(\lim {\left( {\frac{{|a|}}{{m + 1}}} \right)^{n – m}} = 0.\)

Từ đó suy ra: \(\lim \frac{{{a^n}}}{{n!}} = 0.\)

2. Nếu \(a =1\) thì ta có điều phải chứng minh.

Giả sử \(a />1.\) Khi đó: \(a = {[1 + (\sqrt[n]{a} – 1)]^n} /> n(\sqrt[n]{a} – 1).\)

Suy ra: \(0 < \sqrt[n]{a} – 1 < \frac{a}{n} \to 0\) nên \(\lim \sqrt[n]{a} = 1.\)

Với \(0 < a < 1\) thì \(\frac{1}{a} /> 1\) \( \Rightarrow \lim \sqrt[n]{{\frac{1}{a}}} = 1\) \( \Rightarrow \lim \sqrt[n]{a} = 1.\)

Tóm lại ta luôn có: \(\lim \sqrt[n]{a} = 1\) với \(a /> 0.\)

Bài 5. Dãy số \(\left( {{x_n}} \right)\) thỏa mãn điều kiện \(1 < {x_1} < 2\) và \({x_{n + 1}} = 1 + {x_n} – \frac{1}{2}x_n^2\), \(\forall n \in {N^*}.\) Chứng minh rằng dãy số đã cho hội tụ. Tìm \(\lim {x_n}.\)

Lời giải:

Ta sẽ chứng minh bằng quy nạp bất đẳng thức sau: \(\left| {{x_n} – \sqrt 2 } \right| < \frac{1}{{{2^n}}}\), \(\forall n \ge 3.\)

Thật vậy ta kiểm tra được ngay bất đẳng thức đúng với \(n= 3.\)

Giả sử bất đẳng thức đúng với \(n \ge 3\), tức là \(\left| {{x_n} – \sqrt 2 } \right| < \frac{1}{{{2^n}}}.\)

Khi đó ta có: \(\left| {{x_{n + 1}} – \sqrt 2 } \right|\) \( = \frac{1}{2}\left| {{x_n} – \sqrt 2 } \right|\left| {2 – \sqrt 2 – {x_n}} \right|\) \( \le \frac{1}{2}\left| {{x_n} – \sqrt 2 } \right|\left( {\left| {\sqrt 2 – {x_n}} \right| + \left| {2 – 2\sqrt 2 } \right|} \right).\)

\( < \frac{1}{2}\left| {{x_n} – \sqrt 2 } \right|\) \( < \frac{1}{2}\frac{1}{{{2^n}}} = \frac{1}{{{2^{n + 1}}}}.\)

Do đó bất đẳng thức đúng đến \(n+1.\)

Mặt khác do \(\lim \frac{1}{{{2^n}}} = 0\) nên từ bất đẳng thức trên và nguyên lý kẹp ta có \(\lim \left( {{x_n} – \sqrt 2 } \right) = 0\) \( \Rightarrow \lim {x_n} = \sqrt 2 .\)

Chú ý: Ta có kết quả sau:

Cho hàm số \(f:R \to R\) thỏa: \(|f(x) – f(y)| \le q.|x – y|\) với mọi \(x,y \in R\) và \(q \in (0;1).\) Khi đó dãy số \(\left( {{u_n}} \right)\) được xác định bởi \({u_0} = c\); \({u_n} = f\left( {{u_{n – 1}}} \right)\), \(\forall n = 2,3, \ldots \) có giới hạn hữu hạn là nghiệm của phương trình \(f(x) = x.\)

Sử dụng kết quả trên ta có nghiệm của phương trình \(f(x) = x\) có nghiệm là \(\sqrt 2 \) nên ta mới đi chứng minh \(\lim {x_n} = \sqrt 2 .\)

Giải bài toán tìm giới hạn dãy số bằng định nghĩa: Phương Pháp, Mẹo Học Hiệu Quả và Ví Dụ Chi Tiết

Bài toán tìm giới hạn dãy số bằng định nghĩa là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.

1. Tầm Quan Trọng Của Việc Giải Bài Toán tìm giới hạn dãy số bằng định nghĩa

Bài toán tìm giới hạn dãy số bằng định nghĩa thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.

  • Rèn luyện tư duy logic: Việc giải các bài toán thuộc dạng này giúp bạn phát triển khả năng tư duy phân tích, nhận biết mối quan hệ giữa các yếu tố trong bài toán.
  • Củng cố kiến thức: Qua quá trình luyện tập, bạn sẽ hiểu sâu hơn về các công thức, định lý, và phương pháp áp dụng.
  • Chuẩn bị cho kỳ thi: Việc làm quen với dạng bài này sẽ giúp bạn tự tin hơn khi bước vào phòng thi.

2. Phương Pháp Giải Bài Toán tìm giới hạn dãy số bằng định nghĩa

Để giải hiệu quả bài toán tìm giới hạn dãy số bằng định nghĩa, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:

Bước 1: Hiểu Đề Bài

  • Đọc kỹ đề bài để nắm bắt yêu cầu chính xác.
  • Xác định các yếu tố đã cho và cần tìm.
  • Phân tích mối liên hệ giữa các yếu tố.

Bước 2: Lựa Chọn Phương Pháp Giải

Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:

  • Phương pháp trực tiếp: Sử dụng các công thức hoặc định lý có sẵn để giải bài.
  • Phương pháp gián tiếp: Biến đổi bài toán về một dạng quen thuộc hoặc dễ xử lý hơn.
  • Sử dụng đồ thị: Trong trường hợp bài toán liên quan đến hàm số hoặc biểu đồ.

Bước 3: Triển Khai Lời Giải

  • Áp dụng công thức và phương pháp đã chọn.
  • Trình bày các bước giải rõ ràng, logic.
  • Kiểm tra lại từng bước để đảm bảo không có sai sót.

Bước 4: Kiểm Tra Kết Quả

  • So sánh kết quả với yêu cầu đề bài.
  • Đánh giá xem lời giải có đáp ứng đầy đủ yêu cầu chưa.

3. Những Mẹo Học Hiệu Quả Khi Giải Bài Toán tìm giới hạn dãy số bằng định nghĩa

Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:

Mẹo 1: Nắm Vững Kiến Thức Cơ Bản

Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.

Mẹo 2: Luyện Tập Thường Xuyên

Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.

Mẹo 3: Phân Tích Sai Lầm

Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.

Mẹo 4: Sử Dụng Tài Liệu Tham Khảo

Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.

4. Ví Dụ Chi Tiết Về Bài Toán tìm giới hạn dãy số bằng định nghĩa

Ví Dụ 1: Đề Bài Cụ Thể

Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”

Lời Giải:

  • 1. Phân tích đề bài: [Chi tiết phân tích các yếu tố]
  • 2. Sử dụng phương pháp: [Phương pháp áp dụng và lý do chọn phương pháp này]
  • 3. Triển khai từng bước:
    • Bước 1: [Mô tả bước đầu tiên]
    • Bước 2: [Mô tả bước tiếp theo]

4. Kết quả cuối cùng: [Đáp án và kiểm tra lại đáp án].

Ví Dụ 2: Bài Tập Nâng Cao

Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:

  • Đề bài: “Chứng minh rằng [nội dung đề bài nâng cao].”
  • Gợi ý lời giải: [Cách tiếp cận và các bước triển khai chi tiết].

5. Tài Liệu Hỗ Trợ Học Tập

Nếu bạn cần thêm tài liệu tham khảo để giải bài toán tìm giới hạn dãy số bằng định nghĩa, dưới đây là một số nguồn hữu ích:

  • Sách tham khảo: Các sách chuyên đề về toán học.
  • Website học toán: Những trang web uy tín cung cấp bài tập và lời giải chi tiết.
  • Video bài giảng: Các kênh YouTube hoặc khóa học trực tuyến giúp bạn hiểu sâu hơn về phương pháp giải.

6. Lời Khuyên Từ Chuyên Gia

Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.

7. Kết Luận

Bài toán tìm giới hạn dãy số bằng định nghĩa là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.

Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!

>> Xem thêm đáp án chi tiết về: tìm giới hạn dãy số bằng định nghĩa.