Bài viết trình bày tóm tắt lý thuyết và hướng dẫn giải một số dạng toán điển hình trong chủ đề giá trị lượng giác của một góc bất kì từ 0º đến 180º.
A. TÓM TẮT LÝ THUYẾT
1. Định nghĩa
Trong mặt phẳng tọa độ \(Oxy.\) Với mỗi góc \(\alpha \) \(\left( {{0^0} \le \alpha \le {{180}^0}} \right)\), ta xác định điểm \(M\) trên nửa đường tròn đơn vị tâm \(O\) sao cho \(\alpha = \widehat {xOM}.\)
Giả sử điểm \(M\) có tọa độ \((x;y).\)
Khi đó:
\(\sin \alpha = y\), \(\cos \alpha = x\), \(\tan \alpha = \frac{y}{x}\) \(\left( {\alpha \ne {{90}^0}} \right)\), \(\cot \alpha = \frac{x}{y}\) \(\left( {\alpha \ne {0^0},\alpha \ne {{180}^0}} \right).\)
Các số \(\sin \alpha \), \(\cos \alpha \), \(\tan \alpha \), \(\cot \beta \) được gọi là giá trị lượng giác của góc \(\alpha .\)
Chú ý: Từ định nghĩa ta có:
+ Gọi \(P\), \(Q\) lần lượt là hình chiếu của \(M\) lên trục \(Ox\), \(Oy\) khi đó \(M(\overline {OP} ;\overline {OQ} ).\)
+ Với \({0^0} \le \alpha \le {180^0}\) ta có \(0 \le \sin \alpha \le 1\), \( – 1 \le \cos \alpha \le 1.\)
+ Dấu của giá trị lượng giác:
2. Tính chất
Góc phụ nhau:
\(\sin \left( {{{90}^0} – \alpha } \right) = \cos \alpha .\)
\(\cos \left( {{{90}^0} – \alpha } \right) = \sin \alpha .\)
\(\tan \left( {{{90}^0} – \alpha } \right) = \cot \alpha .\)
\(\cot \left( {{{90}^0} – \alpha } \right) = \tan \alpha .\)
Góc bù nhau:
\(\sin \left( {{{180}^0} – \alpha } \right) = \sin \alpha .\)
\(\cos \left( {{{180}^0} – \alpha } \right) = – \cos \alpha .\)
\(\tan \left( {{{180}^0} – \alpha } \right) = – \tan \alpha .\)
\(\cot \left( {{{180}^0} – \alpha } \right) = – \cot \alpha .\)
3. Giá trị lượng giác của các góc đặc biệt
4. Các hệ thức lượng giác cơ bản
1) \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\) \(\left( {\alpha \ne {{90}^0}} \right).\)
2) \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }}\) \(\left( {\alpha \ne {0^0};{{180}^0}} \right).\)
3) \(\tan \alpha .\cot \alpha = 1\) \(\left( {\alpha \ne {0^0};{{90}^0};{{180}^0}} \right).\)
4) \({\sin ^2}\alpha + {\cos ^2}\alpha = 1.\)
5) \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\) \(\left( {\alpha \ne {{90}^0}} \right).\)
6) \(1 + {\cot ^2}\alpha = \frac{1}{{{{\sin }^2}\alpha }}\) \(\left( {\alpha \ne {0^0};{{180}^0}} \right).\)
Chứng minh:
Hệ thức 1, 2 và 3 dễ dàng suy ra từ định nghĩa.
Ta có \(\sin \alpha = \overline {OQ} \), \(\cos \alpha = \overline {OP} .\)
Suy ra \({\sin ^2}\alpha + {\cos ^2}\alpha \) \( = {\overline {OQ} ^2} + {\overline {OP} ^2}\) \( = O{Q^2} + O{P^2}.\)
+ Nếu \(\alpha = {0^0}\), \(\alpha = {90^0}\) hoặc \(\alpha = {180^0}\) thì dễ dàng thấy \({\sin ^2}\alpha + {\cos ^2}\alpha = 1.\)
+ Nếu \(\alpha \ne {0^0}\), \(\alpha \ne {90^0}\) và \(\alpha \ne {180^0}\) khi đó theo định lý Pitago ta có:
\({\sin ^2}\alpha + {\cos ^2}\alpha \) \( = O{Q^2} + O{P^2}\) \( = O{Q^2} + Q{M^2}\) \( = O{M^2} = 1.\)
Vậy ta có \({\sin ^2}\alpha + {\cos ^2}\alpha = 1.\)
Mặt khác \(1 + {\tan ^2}\alpha \) \( = 1 + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }}\) \( = \frac{{{{\cos }^2}\alpha + {{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }}\) \( = \frac{1}{{{{\cos }^2}\alpha }}\) suy ra được hệ thức 5.
Tương tự \(1 + {\cot ^2}\alpha \) \( = 1 + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }}\) \( = \frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }}\) \( = \frac{1}{{{{\sin }^2}\alpha }}\) suy ra được hệ thức 6.
B. CÁC DẠNG TOÁN VÀ PHƯƠNG PHÁP GIẢI
DẠNG TOÁN 1: XÁC ĐỊNH GIÁ TRỊ LƯỢNG GIÁC CỦA GÓC ĐẶC BIỆT.
1. PHƯƠNG PHÁP GIẢI
+ Sử dụng định nghĩa giá trị lượng giác của một góc.
+ Sử dụng tính chất và bảng giá trị lượng giác đặc biệt.
+ Sử dụng các hệ thức lượng giác cơ bản.
2. CÁC VÍ DỤ
Ví dụ 1: Tính giá trị các biểu thức sau:
a) \(A = {a^2}\sin {90^0} + {b^2}\cos {90^0} + {c^2}\cos {180^0}.\)
b) \(B = 3 – {\sin ^2}{90^0} + 2{\cos ^2}{60^0} – 3{\tan ^2}{45^0}.\)
c) \(C = {\sin ^2}{45^0} – 2{\sin ^2}{50^0}\) \( + 3{\cos ^2}{45^0} – 2{\sin ^2}{40^0}\) \( + 4\tan {55^0}.\tan {35^0}.\)
a) \(A = {a^2}.1 + {b^2}.0 + {c^2}.( – 1)\) \( = {a^2} – {c^2}.\)
b) \(B = 3 – {(1)^2} + 2{\left( {\frac{1}{2}} \right)^2}\) \( – 3{\left( {\frac{{\sqrt 2 }}{2}} \right)^2} = 1.\)
c) \(C = {\sin ^2}{45^0} + 3{\cos ^2}{45^0}\) \( – 2\left( {{{\sin }^2}{{50}^0} + {{\sin }^2}{{40}^0}} \right)\) \( + 4\tan {55^0}.\cot {55^0}.\)
\(C = {\left( {\frac{{\sqrt 2 }}{2}} \right)^2} + 3{\left( {\frac{{\sqrt 2 }}{2}} \right)^2}\) \( – 2\left( {{{\sin }^2}{{50}^0} + {{\cos }^2}{{40}^0}} \right) + 4\) \( = \frac{1}{2} + \frac{3}{2} – 2 + 4 = 4.\)
Ví dụ 2: Tính giá trị các biểu thức sau:
a) \(A = {\sin ^2}{3^0} + {\sin ^2}{15^0}\) \( + {\sin ^2}{75^0} + {\sin ^2}{87^0}.\)
b) \(B = \cos {0^0} + \cos {20^0} + \cos {40^0}\) \( + \ldots + \cos {160^0} + \cos {180^0}.\)
c) \(C = \tan {5^0}\tan {10^0}\tan {15^0} \ldots \tan {80^0}\tan {85^0}.\)
a) \(A = \left( {{{\sin }^2}{3^0} + {{\sin }^2}{{87}^0}} \right)\) \( + \left( {{{\sin }^2}{{15}^0} + {{\sin }^2}{{75}^0}} \right).\)
\( = \left( {{{\sin }^2}{3^0} + {{\cos }^2}{3^0}} \right)\) \( + \left( {{{\sin }^2}{{15}^0} + {{\cos }^2}{{15}^0}} \right).\)
\( = 1 + 1 = 2.\)
b) \(B = \left( {\cos {0^0} + \cos {{180}^0}} \right)\) \( + \left( {\cos {{20}^0} + \cos {{160}^0}} \right)\) \( + \ldots + \left( {\cos {{80}^0} + \cos {{100}^0}} \right).\)
\( = \left( {\cos {0^0} – \cos {0^0}} \right)\) \( + \left( {\cos {{20}^0} – \cos {{20}^0}} \right)\) \( + \ldots + \left( {\cos {{80}^0} – \cos {{80}^0}} \right).\)
\( = 0.\)
c) \(C = \left( {\tan {5^0}\tan {{85}^0}} \right)\)\(\left( {\tan {{15}^0}\tan {{75}^0}} \right)\)\( \cdots \left( {\tan {{45}^0}\tan {{45}^0}} \right).\)
\( = \left( {\tan {5^0}\cot {5^0}} \right)\)\(\left( {\tan {{15}^0}\cot {{15}^0}} \right)\)\( \ldots \left( {\tan {{45}^0}\cot {{45}^0}} \right).\)
\( = 1.\)
3. BÀI TẬP LUYỆN TẬP
Bài 1: Tính giá trị các biểu thức sau:
a) \(A = \sin {45^0} + 2\cos {60^0}\) \( – \tan {30^0} + 5\cot {120^0}\) \( + 4\sin {135^0}.\)
b) \(B = 4{a^2}{\sin ^2}{45^0}\) \( – 3{\left( {a\tan {{45}^0}} \right)^2} + {\left( {2a\cos {{45}^0}} \right)^2}.\)
c) \(C = {\sin ^2}{35^0} – 5{\sin ^2}{73^0}\) \( + {\cos ^2}{35^0} – 5{\cos ^2}{73^0}.\)
d) \(D = \frac{{12}}{{1 + {{\tan }^2}{{76}^0}}}\) \( – 5\tan {85^0}\cot {95^0} + 12{\sin ^2}{104^0}.\)
e) \(E = {\sin ^2}{1^0} + {\sin ^2}{2^0}\) \( + \ldots + {\sin ^2}{89^0} + {\sin ^2}{90^0}.\)
f) \(F = {\cos ^3}{1^0} + {\cos ^3}{2^0} + {\cos ^3}{3^0}\) \( + \ldots + {\cos ^3}{179^0} + {\cos ^3}{180^0}.\)
a) \(A = \frac{{\sqrt 2 }}{2} + 2.\frac{1}{2} – \frac{{\sqrt 3 }}{3}\) \( – 5.\frac{{\sqrt 3 }}{3} + 4.\frac{{\sqrt 2 }}{2}\) \( = 1 + \frac{{5\sqrt 2 }}{2} – 2\sqrt 3 .\)
b) \(B = 4{a^2}.{\left( {\frac{{\sqrt 2 }}{2}} \right)^2}\) \( – 3{a^2} + {(\sqrt 2 a)^2} = {a^2}.\)
c) \(C = \left( {{{\sin }^2}{{35}^0} + {{\cos }^2}{{35}^0}} \right)\) \( – 5\left( {{{\sin }^2}{{75}^0} + {{\cos }^2}{{75}^0}} \right)\) \( = 1 – 5 = – 4.\)
d) \(D = 12{\cos ^2}{76^0}\) \( + 5\tan {85^0}.\cot {85^0}\) \( + 12{\sin ^2}{76^0}\) \( = 12 + 5 = 17.\)
e) \(E = \left( {{{\sin }^2}{1^0} + {{\sin }^2}{{89}^0}} \right)\) \( + \left( {{{\sin }^2}{2^0} + {{\sin }^2}{{88}^0}} \right)\) \( + \ldots + \left( {{{\sin }^2}{{44}^0} + {{\sin }^2}{{46}^0}} \right)\) \( + {\sin ^2}{45^0} + {\sin ^2}{90^0}.\)
\(E = \left( {{{\sin }^2}{1^0} + {{\cos }^2}{1^0}} \right)\) \( + \left( {{{\sin }^2}{2^0} + {{\cos }^2}{2^0}} \right)\) \( + \ldots + \left( {{{\sin }^2}{{44}^0} + {{\cos }^2}{{44}^0}} \right)\) \( + \frac{1}{2} + 1.\)
\(E = \underbrace {1 + 1 + \ldots + 1}_{44\:{\rm{số}}} + \frac{1}{2} + 1 = \frac{{91}}{2}.\)
f) \(F = \left( {{{\cos }^3}{1^0} + {{\cos }^3}{{179}^0}} \right)\) \( + \ldots + \left( {{{\cos }^3}{{89}^0} + {{\cos }^3}{{91}^0}} \right)\) \( + {\cos ^3}{90^0} + {\cos ^3}{180^0}.\)
\(F = {\cos ^3}{90^0} + {\cos ^3}{180^0}\) \( = 0 – 1 = – 1.\)
Bài 2: Tính giá trị của biểu thức sau: \(P = \) \(4\tan \left( {x + {4^0}} \right).\sin x.\cot \left( {4x + {{26}^0}} \right)\) \( + \frac{{8{{\tan }^2}\left( {{3^0} – x} \right)}}{{1 + {{\tan }^2}\left( {5x + {3^0}} \right)}}\) \( + 8{\cos ^2}\left( {x – {3^0}} \right)\) khi \(x = {30^0}.\)
Thay vào ta có: \(P = \) \(4\tan {34^0}.\sin {30^0}.\cot {146^0}\) \( + \frac{{8{{\tan }^2}\left( { – {{27}^0}} \right)}}{{1 + {{\tan }^2}{{153}^0}}}\) \( + 8{\cos ^2}{27^0}.\)
\(P = – 4.\tan {34^0}.\frac{1}{2}.\cot {34^0}\) \( + 8{\tan ^2}{27^0}.{\cos ^2}{27^0}\) \( + 8{\cos ^2}{27^0}\) \( = – 2 + 8 = 6.\)
DẠNG TOÁN 2: CHỨNG MINH ĐẲNG THỨC LƯỢNG GIÁC – CHỨNG MINH BIỂU THỨC KHÔNG PHỤ THUỘC \(X\) – ĐƠN GIẢN BIỂU THỨC.
1. PHƯƠNG PHÁP GIẢI
+ Sử dụng các hệ thức lượng giác cơ bản.
+ Sử dụng tính chất của giá trị lượng giác.
+ Sử dụng các hằng đẳng thức đáng nhớ.
2. CÁC VÍ DỤ
Ví dụ 1: Chứng minh các đẳng thức sau (giả sử các biểu thức sau đều có nghĩa).
a) \({\sin ^4}x + {\cos ^4}x\) \( = 1 – 2{\sin ^2}x.{\cos ^2}x.\)
b) \(\frac{{1 + \cot x}}{{1 – \cot x}} = \frac{{\tan x + 1}}{{\tan x – 1}}.\)
c) \(\frac{{\cos x + \sin x}}{{{{\cos }^3}x}}\) \( = {\tan ^3}x + {\tan ^2}x + \tan x + 1.\)
a) \({\sin ^4}x + {\cos ^4}x\) \( = {\sin ^4}x + {\cos ^4}x\) \( + 2{\sin ^2}x{\cos ^2}x\) \( – 2{\sin ^2}x{\cos ^2}x.\)
\( = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2}\) \( – 2{\sin ^2}x{\cos ^2}x.\)
\( = 1 – 2{\sin ^2}x{\cos ^2}x.\)
b) \(\frac{{1 + \cot x}}{{1 – \cot x}}\) \( = \frac{{1 + \frac{1}{{\tan x}}}}{{1 – \frac{1}{{\tan x}}}}\) \( = \frac{{\frac{{\tan x + 1}}{{\tan x}}}}{{\frac{{\tan x – 1}}{{\tan x}}}}\) \( = \frac{{\tan x + 1}}{{\tan x – 1}}.\)
c) \(\frac{{\cos x + \sin x}}{{{{\cos }^3}x}}\) \( = \frac{1}{{{{\cos }^2}x}} + \frac{{\sin x}}{{{{\cos }^3}x}}\) \( = {\tan ^2}x + 1 + \tan x\left( {{{\tan }^2}x + 1} \right).\)
\( = {\tan ^3}x + {\tan ^2}x + \tan x + 1.\)
Ví dụ 2: Cho tam giác \(ABC.\) Chứng minh rằng:
\(\frac{{{{\sin }^3}\frac{B}{2}}}{{\cos \left( {\frac{{A + C}}{2}} \right)}}\) \( + \frac{{{{\cos }^3}\frac{B}{2}}}{{\sin \left( {\frac{{A + C}}{2}} \right)}}\) \( – \frac{{\cos (A + C)}}{{\sin B}}.\tan B = 2.\)
Vì \(A + B + C = {180^0}\) nên:
\(VT = \frac{{{{\sin }^3}\frac{B}{2}}}{{\cos \left( {\frac{{{{180}^0} – B}}{2}} \right)}}\) \( + \frac{{{{\cos }^3}\frac{B}{2}}}{{\sin \left( {\frac{{{{180}^0} – B}}{2}} \right)}}\) \( – \frac{{\cos \left( {{{180}^0} – B} \right)}}{{\sin B}}.\tan B.\)
\( = \frac{{{{\sin }^3}\frac{B}{2}}}{{\sin \frac{B}{2}}} + \frac{{{{\cos }^3}\frac{B}{2}}}{{\cos \frac{B}{2}}}\) \( – \frac{{ – \cos B}}{{\sin B}}.\tan B\) \( = {\sin ^2}\frac{B}{2} + {\cos ^2}\frac{B}{2} + 1\) \( = 2 = VP.\)
Suy ra điều phải chứng minh.
Ví dụ 3: Đơn giản các biểu thức sau (giả sử các biểu thức sau đều có nghĩa):
a) \(A = \sin \left( {{{90}^0} – x} \right)\) \( + \cos \left( {{{180}^0} – x} \right)\) \( + {\sin ^2}x\left( {1 + {{\tan }^2}x} \right)\) \( – {\tan ^2}x.\)
b) \(B = \frac{1}{{\sin x}}.\sqrt {\frac{1}{{1 + \cos x}} + \frac{1}{{1 – \cos x}}} – \sqrt 2 .\)
a) \(A = \cos x – \cos x\) \( + {\sin ^2}x.\frac{1}{{{{\cos }^2}x}}\) \( – {\tan ^2}x = 0.\)
b) \(B = \frac{1}{{\sin x}} \cdot \sqrt {\frac{{1 – \cos x + 1 + \cos x}}{{(1 – \cos x)(1 + \cos x)}}} – \sqrt 2 .\)
\( = \frac{1}{{\sin x}}.\sqrt {\frac{2}{{1 – {{\cos }^2}x}}} – \sqrt 2 \) \( = \frac{1}{{\sin x}}.\sqrt {\frac{2}{{{{\sin }^2}x}}} – \sqrt 2 .\)
\( = \sqrt 2 \left( {\frac{1}{{{{\sin }^2}x}} – 1} \right)\) \( = \sqrt 2 {\cot ^2}x.\)
Ví dụ 4: Chứng minh biểu thức sau không phụ thuộc vào \(x.\)
\(P = \sqrt {{{\sin }^4}x + 6{{\cos }^2}x + 3{{\cos }^4}x} \) \( + \sqrt {{{\cos }^4}x + 6{{\sin }^2}x + 3{{\sin }^4}x} .\)
\(P = \sqrt {{{\left( {1 – {{\cos }^2}x} \right)}^2} + 6{{\cos }^2}x + 3{{\cos }^4}x} \) \( + \sqrt {{{\left( {1 – {{\sin }^2}x} \right)}^2} + 6{{\sin }^2}x + 3{{\sin }^4}x} .\)
\( = \sqrt {4{{\cos }^4}x + 4{{\cos }^2}x + 1} \) \( + \sqrt {4{{\sin }^4}x + 4{{\sin }^2}x + 1} .\)
\( = 2{\cos ^2}x + 1 + 2{\sin ^2}x + 1.\)
\( = 3.\)
Vậy \(P\) không phụ thuộc vào \(x.\)
3. BÀI TẬP LUYỆN TẬP
Bài 1: Chứng minh các đẳng thức sau (giả sử các biểu thức sau đều có nghĩa):
a) \({\tan ^2}x – {\sin ^2}x = {\tan ^2}x.{\sin ^2}x.\)
b) \({\sin ^6}x + {\cos ^6}x = 1 – 3{\sin ^2}x.{\cos ^2}x.\)
c) \(\frac{{{{\tan }^3}x}}{{{{\sin }^2}x}} – \frac{1}{{\sin x\cos x}} + \frac{{{{\cot }^3}x}}{{{{\cos }^2}x}}\) \( = {\tan ^3}x + {\cot ^3}x.\)
d) \({\sin ^2}x – {\tan ^2}x\) \( = {\tan ^6}x\left( {{{\cos }^2}x – {{\cot }^2}x} \right).\)
e) \(\frac{{{{\tan }^2}a – {{\tan }^2}b}}{{{{\tan }^2}a.{{\tan }^2}b}}\) \( = \frac{{{{\sin }^2}a – {{\sin }^2}b}}{{{{\sin }^2}a.{{\sin }^2}b}}.\)
a) \(VT = \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} – {\sin ^2}x\) \( = {\sin ^2}x\left( {1 + {{\tan }^2}x} \right) – {\sin ^2}x\) \( = VP.\)
b) \({\sin ^6}x + {\cos ^6}x\) \( = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^3}\) \( – 3{\sin ^2}x.{\cos ^2}x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\) \( = 1 – 3{\sin ^2}x.{\cos ^2}x.\)
c) \(VT = {\tan ^3}x\left( {{{\cot }^2}x + 1} \right)\) \( – \tan x\left( {{{\cot }^2}x + 1} \right)\) \( + {\cot ^3}x\left( {{{\tan }^2}x + 1} \right)\) \( = \tan x + {\tan ^3}x – \cot x\) \( – \tan x + \cot x + {\cot ^3}x = VP.\)
d) \(VP = {\tan ^6}x{\cos ^2}x – {\tan ^6}x{\cot ^2}x\) \( = {\tan ^4}x{\sin ^2}x – {\tan ^4}x\) \( = {\tan ^4}x.{\cos ^2}x\) \( = {\tan ^2}x.{\sin ^2}x\) \( = {\tan ^2}x – {\sin ^2}x = VT\) (do câu a).
e) \(VT = \frac{1}{{{{\tan }^2}b}} – \frac{1}{{{{\tan }^2}a}}\) \( = {\cot ^2}b – {\cot ^2}a\) \( = \frac{1}{{{{\sin }^2}b}} – \frac{1}{{{{\sin }^2}a}} = VP.\)
Bài 2: Đơn giản các biểu thức sau (giả sử các biểu thức sau đều có nghĩa):
a) \(A = \frac{1}{{{{\cos }^2}x}}\) \( – {\tan ^2}\left( {{{180}^0} – x} \right)\) \( – {\cos ^2}\left( {{{180}^0} – x} \right).\)
b) \(B = \frac{{{{\cos }^2}x – {{\sin }^2}x}}{{{{\cot }^2}x – {{\tan }^2}x}} – {\cos ^2}x.\)
c) \(C = \frac{{{{\sin }^3}a + {{\cos }^3}a}}{{{{\cos }^2}a + \sin a(\sin a – \cos a)}}.\)
d) \(D = \sqrt {\frac{{1 + \sin a}}{{1 – \sin a}}} + \sqrt {\frac{{1 – \sin a}}{{1 + \sin a}}} .\)
a) \(A = {\tan ^2}x + 1\) \( – {\tan ^2}x – {\cos ^2}x\) \( = {\sin ^2}x.\)
b) \(B = \frac{{{{\cos }^2}x – {{\sin }^2}x}}{{\frac{1}{{{{\sin }^2}x}} – 1 – \frac{1}{{{{\cos }^2}x}} + 1}}\) \( – {\cos ^2}x\) \( = {\cos ^2}x{\sin ^2}x – {\cos ^2}x\) \( = – {\cos ^4}x.\)
c) \(C = \) \(\frac{{(\sin a + \cos a)\left( {{{\sin }^2}a – \sin a\cos a + {{\cos }^2}a} \right)}}{{{{\sin }^2}a – \sin a\cos a + {{\cos }^2}a}}\) \( = \sin a + \cos a.\)
d) \({D^2} = \) \(\frac{{1 + \sin a}}{{1 – \sin a}} + \frac{{1 – \sin a}}{{1 + \sin a}} + 2\) \( = \frac{{{{(1 + \sin a)}^2} + {{(1 – \sin a)}^2}}}{{1 – {{\sin }^2}a}} + 2\) \( = \frac{{2 + 2{{\sin }^2}a}}{{{{\cos }^2}a}} + 2\) \( = \frac{4}{{{{\cos }^2}a}}.\)
Suy ra \(D = \frac{2}{{|\cos a|}}.\)
Bài 3: Chứng minh biểu thức sau không phụ thuộc vào \(\alpha \) (giả sử các biểu thức sau đều có nghĩa):
a) \(2\left( {{{\sin }^6}\alpha + {{\cos }^6}\alpha } \right)\) \( – 3\left( {{{\sin }^4}\alpha + {{\cos }^4}\alpha } \right).\)
b) \({\cot ^2}{30^0}\left( {{{\sin }^8}\alpha – {{\cos }^8}\alpha } \right)\) \( + 4\cos {60^0}\left( {{{\cos }^6}\alpha – {{\sin }^6}\alpha } \right)\) \( – {\sin ^6}\left( {{{90}^0} – \alpha } \right){\left( {{{\tan }^2}\alpha – 1} \right)^3}.\)
c) \(\left( {{{\sin }^4}x + {{\cos }^4}x – 1} \right)\)\(\left( {{{\tan }^2}x + {{\cot }^2}x + 2} \right).\)
d) \(\frac{{{{\sin }^4}x + 3{{\cos }^4}x – 1}}{{{{\sin }^6}x + {{\cos }^6}x + 3{{\cos }^4}x – 1}}.\)
a) \(2\left( {{{\sin }^6}\alpha + {{\cos }^6}\alpha } \right)\) \( – 3\left( {{{\sin }^4}\alpha + {{\cos }^4}\alpha } \right).\)
\( = 2\left( {1 – 3{{\sin }^2}x.{{\cos }^2}x} \right)\) \( – 3\left( {1 – 2{{\sin }^2}x.{{\cos }^2}x} \right) = – 1.\)
b) \({\cot ^2}{30^0}\left( {{{\sin }^8}\alpha – {{\cos }^8}\alpha } \right)\) \( + 4\cos {60^0}\left( {{{\cos }^6}\alpha – {{\sin }^6}\alpha } \right)\) \( – {\sin ^6}\left( {{{90}^0} – \alpha } \right){\left( {{{\tan }^2}\alpha – 1} \right)^3}.\)
\( = 3\left( {{{\sin }^2}\alpha – {{\cos }^2}\alpha } \right)\left( {{{\sin }^4}\alpha + {{\cos }^4}\alpha } \right)\) \( – 2\left( {{{\sin }^2}\alpha – {{\cos }^2}\alpha } \right)\)\(\left( {{{\sin }^4}\alpha + {{\sin }^2}\alpha {{\cos }^2}\alpha + {{\cos }^4}\alpha } \right)\) \( – {\left( {{{\sin }^2}\alpha – {{\cos }^2}\alpha } \right)^3}.\)
\( = {\left( {{{\sin }^2}\alpha – {{\cos }^2}\alpha } \right)^3}\) \( – {\left( {{{\sin }^2}\alpha – {{\cos }^2}\alpha } \right)^3} = 0.\)
c) \(\left( {{{\sin }^4}x + {{\cos }^4}x – 1} \right)\)\(\left( {{{\tan }^2}x + {{\cot }^2}x + 2} \right)\) \( = – 2.\)
d) \(\frac{{{{\sin }^4}x + 3{{\cos }^4}x – 1}}{{{{\sin }^6}x + {{\cos }^6}x + 3{{\cos }^4}x – 1}}\) \( = \frac{2}{3}.\)
DẠNG TOÁN 3: XÁC ĐỊNH GIÁ TRỊ CỦA MỘT BIỂU THỨC LƯỢNG GIÁC CÓ ĐIỀU KIỆN.
1. PHƯƠNG PHÁP GIẢI
+ Dựa vào các hệ thức lượng giác cơ bản.
+ Dựa vào dấu của giá trị lượng giác.
+ Sử dụng các hằng đẳng thức đáng nhớ.
2. CÁC VÍ DỤ
Ví dụ 1:
a) Cho \(\sin \alpha = \frac{1}{3}\) với \({90^0} < \alpha < {180^0}.\) Tính \(\cos \alpha \) và \(\tan \alpha .\)
b) Cho \(\cos \alpha = – \frac{2}{3}.\) Tính \(\sin \alpha \) và \(\cot \alpha .\)
c) Cho \(\tan \alpha = – 2\sqrt 2 \), tính giá trị lượng giác còn lại.
a) Vì \({90^0} < \alpha < {180^0}\) nên \(\cos \alpha < 0\) mặt khác \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) suy ra:
\(\cos \alpha = – \sqrt {1 – {{\sin }^2}\alpha } \) \( = – \sqrt {1 – \frac{1}{9}} \) \( = – \frac{{2\sqrt 2 }}{3}.\)
Do đó: \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\) \( = \frac{{\frac{1}{3}}}{{ – \frac{{2\sqrt 2 }}{3}}}\) \( = – \frac{1}{{2\sqrt 2 }}.\)
b) Vì \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) nên \(\sin \alpha = \sqrt {1 – {{\cos }^2}\alpha } \) \( = \sqrt {1 – \frac{4}{9}} = \frac{{\sqrt 5 }}{3}\) và \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }}\) \( = \frac{{ – \frac{2}{3}}}{{\frac{{\sqrt 5 }}{3}}} = – \frac{2}{{\sqrt 5 }}.\)
c) Vì \(\tan \alpha = – 2\sqrt 2 < 0\) \( \Rightarrow \cos \alpha < 0\) mặt khác \({\tan ^2}\alpha + 1 = \frac{1}{{{{\cos }^2}\alpha }}.\)
Nên \(\cos \alpha = – \sqrt {\frac{1}{{{{\tan }^2} + 1}}} \) \( = – \sqrt {\frac{1}{{8 + 1}}} = – \frac{1}{3}.\)
Ta có \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\) \( \Rightarrow \sin \alpha = \tan \alpha .\cos \alpha \) \( = – 2\sqrt 2 .\left( { – \frac{1}{3}} \right) = \frac{{2\sqrt 2 }}{3}.\)
\( \Rightarrow \cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }}\) \( = \frac{{ – \frac{1}{3}}}{{\frac{{2\sqrt 2 }}{3}}} = – \frac{1}{{2\sqrt 2 }}.\)
Ví dụ 2:
a) Cho \(\cos \alpha = \frac{3}{4}\) với \({0^0} < \alpha < {90^0}\). Tính \(A = \frac{{\tan \alpha + 3\cot \alpha }}{{\tan \alpha + \cot \alpha }}.\)
b) Cho \(\tan \alpha = \sqrt 2 .\) Tính \(B = \frac{{\sin \alpha – \cos \alpha }}{{{{\sin }^3}\alpha + 3{{\cos }^3}\alpha + 2\sin \alpha }}.\)
a) Ta có \(A = \frac{{\tan \alpha + 3\frac{1}{{\tan \alpha }}}}{{\tan \alpha + \frac{1}{{\tan \alpha }}}}\) \( = \frac{{{{\tan }^2}\alpha + 3}}{{{{\tan }^2}\alpha + 1}}\) \( = \frac{{\frac{1}{{{{\cos }^2}\alpha }} + 2}}{{\frac{1}{{{{\cos }^2}\alpha }}}}\) \( = 1 + 2{\cos ^2}\alpha .\)
Suy ra \(A = 1 + 2.\frac{9}{{16}} = \frac{{17}}{8}.\)
b) \(B = \frac{{\frac{{\sin \alpha }}{{{{\cos }^3}\alpha }} – \frac{{\cos \alpha }}{{{{\cos }^3}\alpha }}}}{{\frac{{{{\sin }^3}\alpha }}{{{{\cos }^3}\alpha }} + \frac{{3{{\cos }^3}\alpha }}{{{{\cos }^3}\alpha }} + \frac{{2\sin \alpha }}{{{{\cos }^3}\alpha }}}}\) \( = \frac{{\tan \alpha \left( {{{\tan }^2}\alpha + 1} \right) – \left( {{{\tan }^2}\alpha + 1} \right)}}{{{{\tan }^3}\alpha + 3 + 2\tan \alpha \left( {{{\tan }^2}\alpha + 1} \right)}}.\)
Suy ra \(B = \frac{{\sqrt 2 (2 + 1) – (2 + 1)}}{{2\sqrt 2 + 3 + 2\sqrt 2 (2 + 1)}}\) \( = \frac{{3(\sqrt 2 – 1)}}{{3 + 8\sqrt 2 }}.\)
Ví dụ 3: Biết \(\sin x + \cos x = m.\)
a) Tìm \(\sin x\cos x\) và \(\left| {{{\sin }^4}x – {{\cos }^4}x} \right|.\)
b) Chứng minh rằng \(|m| \le \sqrt 2 .\)
a) Ta có \({(\sin x + \cos x)^2}\) \( = {\sin ^2}x + 2\sin x\cos x + {\cos ^2}x\) \( = 1 + 2\sin x\cos x\) \((*).\)
Mặt khác \(\sin x + \cos x = m\) nên \({m^2} = 1 + 2\sin x\cos x.\)
Hay \(\sin x\cos x = \frac{{{m^2} – 1}}{2}.\)
Đặt \(\dot A = \left| {{{\sin }^4}x – {{\cos }^4}x} \right|.\) Ta có:
\(A = \left| {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\left( {{{\sin }^2}x – {{\cos }^2}x} \right)} \right|\) \( = |(\sin x + \cos x)(\sin x – \cos x)|.\)
\( \Rightarrow {A^2} = {(\sin x + \cos x)^2}{(\sin x – \cos x)^2}\) \( = (1 + 2\sin x\cos x)(1 – 2\sin x\cos x).\)
\( \Rightarrow {A^2} = \left( {1 + {m^2} – 1} \right)\left( {1 – {m^2} + 1} \right)\) \( = 2{m^2} – {m^4}.\)
Vậy \(A = \sqrt {2{m^2} – {m^4}} .\)
b) Ta có: \(2\sin x\cos x\) \( \le {\sin ^2}x + {\cos ^2}x = 1\) kết hợp với \((*)\) suy ra:
\({(\sin x + \cos x)^2} \le 2\) \( \Rightarrow |\sin x + \cos x| \le \sqrt 2 .\)
Vậy \(|m| \le \sqrt 2 .\)
3. BÀI TẬP LUYỆN TẬP
Bài 1: Tính các giá trị lượng giác còn lại, biết:
a) \(\sin \alpha = \frac{3}{5}\) với \({0^0} < \alpha < {90^0}.\)
b) \(\cos \alpha = \sqrt {\frac{1}{5}} .\)
c) \(\cot \alpha = – \sqrt 2 .\)
d) \(\tan \alpha + \cot \alpha < 0\) và \(\sin \alpha = \frac{1}{5}.\)
a) \(\cos \alpha = \sqrt {1 – {{\sin }^2}\alpha } = \frac{4}{5}\), \(\tan \alpha = \frac{3}{4}\), \(\cot \alpha = \frac{4}{3}.\)
b) \(\sin \alpha = \sqrt {1 – {{\cos }^2}\alpha } = \frac{2}{{\sqrt 5 }}\), \(\tan \alpha = 2\), \(\cot \alpha = \frac{1}{2}.\)
c) \(\sin \alpha = \frac{1}{{\sqrt 3 }}\), \(\cos \alpha = – \frac{{\sqrt 6 }}{3}\), \(\tan \alpha = – \frac{1}{{\sqrt 2 }}.\)
d) Ta có \(\tan \alpha \cot \alpha = 1 /> 0\) mà \(\tan \alpha + \cot \alpha < 0\) suy ra \(\tan \alpha < 0\), \(\cot \alpha < 0.\)
\(\cot \alpha = – \sqrt {\frac{1}{{{{\sin }^2}\alpha }} – 1} \) \( = – 2\sqrt 6 \) \( \Rightarrow \tan \alpha = – \frac{1}{{2\sqrt 6 }}\), \(\cos \alpha = \cot \alpha .\sin \alpha \) \( = – \frac{{2\sqrt 6 }}{5}.\)
Bài 2:
a) Cho \(\sin a = \frac{1}{3}\) với \({90^0} < a < {180^0}.\) Tính \(B = \frac{{3\cot a + 2\tan a + 1}}{{\cot a + \tan a}}.\)
b) Cho \(\cot a = 5.\) Tính \(D = 2{\cos ^2}a + 5\sin a\cos a + 1.\)
a) Từ giả thiết suy ra:
\(\cos a = – \frac{{2\sqrt 2 }}{3}\), \(\tan a = – \frac{1}{{2\sqrt 2 }}\), \(\cot a = – 2\sqrt 2 \) \( \Rightarrow B = \frac{{26 – 2\sqrt 2 }}{9}.\)
b) \(\frac{D}{{{{\sin }^2}a}}\) \( = 2{\cot ^2}a + 5\cot a + \frac{1}{{{{\sin }^2}a}}\) \( \Rightarrow \left( {{{\cot }^2}a + 1} \right)D\) \( = 3{\cot ^2}a + 5\cot a + 1.\)
Suy ra \(D = \frac{{101}}{{26}}.\)
Bài 3: Biết \(\tan x + \cot x = m.\)
a) Tìm \({\tan ^2}x + {\cot ^2}x.\)
b) \(\frac{{{{\tan }^6}x + {{\cot }^6}x}}{{{{\tan }^4}x + {{\cot }^4}x}}.\)
a) \({\tan ^2}x + {\cot ^2}x = {m^2} – 2.\)
b) \({\tan ^4}x + {\cot ^4}x\) \( = {\left( {{{\tan }^2}x + {{\cot }^2}x} \right)^2} – 2\) \( = {\left( {{m^2} – 2} \right)^2} – 2\) \( = {m^4} – 4{m^2} + 2.\)
\( \Rightarrow \frac{{{{\tan }^6}x + {{\cot }^6}x}}{{{{\tan }^4}x + {{\cot }^4}x}}\) \( = \frac{{\left( {{m^2} – 2} \right)\left( {{m^4} – 4{m^2} + 1} \right)}}{{{m^4} – 4{m^2} + 2}}.\)
Bài 4: Cho \(\sin \alpha \cos \alpha = \frac{{12}}{{25}}.\) Tính \({\sin ^3}\alpha + {\cos ^3}\alpha .\)
\({(\sin \alpha + \cos \alpha )^2} = 1 + \frac{{24}}{{25}}\) \( \Rightarrow \sin \alpha + \cos \alpha = \frac{7}{5}\) (do \(\cos \alpha /> 0\)).
\( \Rightarrow {\sin ^3}\alpha + {\cos ^3}\alpha \) \( = (\sin \alpha + \cos \alpha )\)\(\left( {{{\sin }^2}\alpha – \sin \alpha \cos \alpha + {{\cos }^2}\alpha } \right)\) \( = \frac{{91}}{{125}}.\)
Bài toán giá trị lượng giác của một góc bất kì từ 0º đến 180º là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán giá trị lượng giác của một góc bất kì từ 0º đến 180º thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán giá trị lượng giác của một góc bất kì từ 0º đến 180º, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán giá trị lượng giác của một góc bất kì từ 0º đến 180º, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán giá trị lượng giác của một góc bất kì từ 0º đến 180º là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: giá trị lượng giác của một góc bất kì từ 0º đến 180º.