https://giaibaitoan.com giới thiệu bài viết hướng dẫn giải bài toán tìm đường tiệm cận của đồ thị hàm số trong chương trình Giải tích 12 chương 1.
A. TÓM TẮT SÁCH GIÁO KHOA
I. TIỆM CẬN ĐỨNG
Đường thẳng \(x = {x_0}\) được gọi là tiệm cận đứng của đồ thị hàm số \(y = f(x)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
\(\mathop {\lim }\limits_{x \to x_0^ – } f(x) = + \infty .\)
\(\mathop {\lim }\limits_{x \to x_0^ + } f(x) = + \infty .\)
\(\mathop {\lim }\limits_{x \to x_0^ – } f(x) = – \infty .\)
\(\mathop {\lim }\limits_{x \to x_0^ + } f(x) = – \infty .\)
II. TIỆM CẬN NGANG
Đường thẳng \(y = {y_0}\) được gọi là tiệm cận ngang của đồ thị hàm số \(y = f(x)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
\(\mathop {\lim }\limits_{x \to + \infty } y = {y_0}.\)
\(\mathop {\lim }\limits_{x \to – \infty } y = {y_0}.\)
III. TIỆM CẬN XIÊN
Đường thẳng \(y = ax + b\) \((a \ne 0)\) được gọi là tiệm cận xiên của đồ thị hàm số \(y = f(x)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
\(\mathop {\lim }\limits_{x \to + \infty } \left[ {f(x) – (ax + b)} \right] = 0.\)
\(\mathop {\lim }\limits_{x \to – \infty } \left[ {f(x) – (ax + b)} \right] = 0.\)
Chú ý: Để xác định các hệ số \(a\), \(b\) trong phương trình của tiệm cận xiên ta có thể áp dụng các công thức sau:
\(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f(x)}}{x}\) \((a \ne 0)\), \(b = \mathop {\lim }\limits_{x \to + \infty } [f(x) – ax]\) hoặc \(a = \mathop {\lim }\limits_{x \to – \infty } \frac{{f(x)}}{x}\) \((a \ne 0)\), \(b = \mathop {\lim }\limits_{x \to – \infty } [f(x) – ax].\)
Nếu \(a = 0\) thì ta có tiệm cận ngang.
B. PHƯƠNG PHÁP GIẢI TOÁN
Vấn đề 1: Tìm tiệm cận đứng của đồ thị hàm số.
1. PHƯƠNG PHÁP
+ Tìm tập xác định.
+ Tìm các giới hạn: \(\mathop {\lim }\limits_{x \to x_0^ + \left( {x_0^ – } \right)} f(x)\) trong đó \({x_0}\) là các điểm đầu khoảng xác định.
+ Nếu một trong giới hạn trên bằng \( \pm \infty \) thì đường thẳng \(x = {x_0}\) là tiệm cận đứng của đồ thị hàm số.
2. CÁC VÍ DỤ
Ví dụ: Tìm các tiệm cận đứng của đồ thị các hàm số sau:
a) \(y = \frac{{3x – 7}}{{4x – 4}}.\)
b) \(y = \frac{{3x – 8}}{{{x^2} – 3x + 2}}.\)
c) \(y = \frac{{2x + 5}}{{\sqrt {x – 3} }}.\)
d) \(y = \frac{{x – 3}}{{{x^2} + 9}}.\)
e) \(y = \frac{{x – 2}}{{{x^2} – 3x + 2}}.\)
a) Tập xác định: \(D = R\backslash \left\{ 1 \right\}.\)
\(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{3x – 7}}{{4x – 4}} = – \infty \) và \(\mathop {\lim }\limits_{x \to {1^ – }} y = \mathop {\lim }\limits_{x \to {1^ – }} \frac{{3x – 7}}{{4x – 4}} = + \infty .\)
Vậy đồ thị có tiệm cận đứng là \(x = 1.\)
b) Tập xác định: \(D = R\backslash \{ 1;2\} .\)
\(\mathop {\lim }\limits_{x \to {1^ – }} y = \mathop {\lim }\limits_{x \to {1^ – }} \frac{{3x – 8}}{{(x – 1)(x – 2)}} = – \infty \) và \(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{3x – 8}}{{(x – 1)(x – 2)}} = + \infty .\)
\( \Rightarrow x = 1\) là một tiệm cận đứng của đồ thị.
\(\mathop {\lim }\limits_{x \to {2^ – }} y = \mathop {\lim }\limits_{x \to {2^ – }} \frac{{3x – 8}}{{(x – 1)(x – 2)}} = + \infty \) và \(\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{3x – 8}}{{(x – 1)(x – 2)}} = – \infty .\)
\( \Rightarrow x = 1\) là một tiệm cận đứng của đồ thị.
Vậy đồ thị hàm số có hai tiệm cận đứng là \(x = 1\) và \(x = 2.\)
c) Tập xác định: \(D = (3; + \infty ).\)
\(\mathop {\lim }\limits_{x \to {3^ + }} y = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{2x + 5}}{{\sqrt {x – 3} }} = + \infty \) \( \Rightarrow x = 3\) là tiệm cận đứng của đồ thị hàm số.
Chú ý: Vì tập xác định là \((3; + \infty )\) nên ta chỉ xét giới hạn khi \(x \to {3^ + }.\)
d) Tập xác định: \(D = R.\)
Vì tập xác định của hàm số là \(R\) nên đồ thị hàm số không có tiệm cận đứng.
e) Tập xác định: \(D = R\backslash \{ 1;2\} .\)
\(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{x – 2}}{{{x^2} – 3x + 2}}\) \( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{1}{{x – 1}} = + \infty .\)
\(\mathop {\lim }\limits_{x \to {1^ – }} y = \mathop {\lim }\limits_{x \to {1^ – }} \frac{{x – 2}}{{{x^2} – 3x + 2}}\) \( = \mathop {\lim }\limits_{x \to {1^ – }} \frac{1}{{x – 1}} = – \infty .\)
Nên \(x = 1\) là tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to 2} y = \mathop {\lim }\limits_{x \to 2} \frac{{x – 2}}{{{x^2} – 3x + 2}}\) \( = \mathop {\lim }\limits_{x \to 2} \frac{1}{{x – 1}} = 1.\)
Nên \(x = 2\) không là tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số có một tiệm cận đứng là \(x = 1.\)
Vấn đề 2: Tìm tiệm cận ngang của đồ thị hàm số.
1. PHƯƠNG PHÁP
+ Tìm tập xác định.
+ Tìm các giới hạn: \(\mathop {\lim }\limits_{x \to + \infty ( – \infty )} f(x).\)
+ Nếu một trong giới hạn trên bằng \(b\) thì đường thẳng \(y = b\) là tiệm cận ngang của đồ thị hàm số.
2. VÍ DỤ
Ví dụ: Tìm các tiệm cận ngang của đồ thị các hàm số sau:
a) \(y = \frac{{{x^2} + 2x + 3}}{{5 – 4x – {x^2}}}.\)
b) \(y = \frac{{\sqrt {{x^2} – 1} + 5x + 3}}{{2x + 2}}.\)
a) Tập xác định: \(D = R\backslash \{ 1; – 5\} .\)
\(\mathop {\lim }\limits_{x \to \pm \infty } y = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{{x^2} + 2x + 3}}{{5 – 4x – {x^2}}}\) \( = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{1 + \frac{2}{x} + \frac{3}{{{x^2}}}}}{{\frac{5}{{{x^2}}} – \frac{4}{x} – 1}} = – 1.\)
Suy ra đường \(y = -1\) là tiệm cận ngang của đồ thị hàm số.
b) Tập xác định: \(D = ( – \infty ; – 1) \cup [1; + \infty ).\)
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} – 1} + 5x + 3}}{{2x + 2}}\) \( = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {1 – \frac{1}{{{x^2}}}} + 5 + \frac{3}{x}}}{{2 + \frac{2}{x}}} = 3.\)
Suy ra đường \(y = 3\) là tiệm cận ngang của đồ thị khi \(x \to + \infty .\)
\(\mathop {\lim }\limits_{x \to – \infty } y = \mathop {\lim }\limits_{x \to – \infty } \frac{{\sqrt {{x^2} – 1} + 5x + 3}}{{2x + 2}}\) \( = \mathop {\lim }\limits_{x \to – \infty } \frac{{ – \sqrt {1 – \frac{1}{{{x^2}}}} + 5 + \frac{3}{x}}}{{2 + \frac{2}{x}}} = 2.\)
Suy ra đường \(y = 2\) là tiệm cận ngang của đồ thị khi \(x \to – \infty .\)
Vấn đề 3: Tìm tiệm cận xiên của đồ thị hàm số.
1. PHƯƠNG PHÁP
+ Tìm tập xác định.
+ Tìm các giới hạn:
Nếu \(f(x) = ax + b + \frac{c}{{mx + n}}\) thì \(\mathop {\lim }\limits_{x \to \pm \infty } [f(x) – (ax + b)] = 0\) nên \(y = ax + b\) là tiệm cận xiên (hay ngang) của đồ thị hàm số.
+ Nếu \(f(x)\) chưa viết được như trên thì ta tìm \(a\), \(b\) theo cách sau:
\(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f(x)}}{x}\) \((a \ne 0)\), \(b = \mathop {\lim }\limits_{x \to + \infty } [f(x) – ax]\) hoặc \(a = \mathop {\lim }\limits_{x \to – \infty } \frac{{f(x)}}{x}\) \((a \ne 0)\), \(b = \mathop {\lim }\limits_{x \to – \infty } [f(x) – ax].\)
Chú ý: Nếu \(a = 0\) thì ta có đường tiệm cận tìm được là tiệm cận ngang.
2. CÁC VÍ DỤ
Ví dụ: Tìm các tiệm cận xiên của đồ thị các hàm số sau:
a) \(y = 4x + 5 + \frac{7}{{2x – 8}}.\)
b) \(y = \sqrt {{x^2} – 4x} + 4x.\)
a) Tập xác định: \(D = R\backslash \{ 4\} .\)
\(\mathop {\lim }\limits_{x \to \pm \infty } [y – (4x + 5)] = \mathop {\lim }\limits_{x \to \pm \infty } \frac{7}{{2x – 8}} = 0.\)
Suy ra đường thẳng \(y = 4x + 5\) là tiệm cận xiên của đồ thị hàm số.
b) Tập xác định: \(D = ( – \infty ;0] \cup [4; + \infty ).\)
+ Khi \(x \to + \infty \):
\(a = \mathop {\lim }\limits_{x \to + \infty } \frac{y}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} – 4x} + 4x}}{x}\) \( = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {1 – \frac{4}{x}} + 4} \right) = 5.\)
\(b = \mathop {\lim }\limits_{x \to + \infty } (y – 5x)\) \( = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} – 4x} – x} \right)\) \( = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} – 4x – {x^2}}}{{\sqrt {{x^2} – 4x} + x}}\) \( = \mathop {\lim }\limits_{x \to + \infty } \frac{{ – 4}}{{\sqrt {1 – \frac{4}{x}} + 1}} = – 2.\)
Vậy khi \(x \to + \infty \) thì đồ thị có tiệm cận xiên là \(y = 5x – 2.\)
+ Khi \(x \to – \infty \):
\(a = \mathop {\lim }\limits_{x \to – \infty } \frac{y}{x}\) \( = \mathop {\lim }\limits_{x \to – \infty } \frac{{\sqrt {{x^2} – 4x} + 4x}}{x}\) \( = \mathop {\lim }\limits_{x \to – \infty } \left( { – \sqrt {1 – \frac{4}{x}} + 4} \right) = 3.\)
\(b = \mathop {\lim }\limits_{x \to – \infty } (y – 3x)\) \( = \mathop {\lim }\limits_{x \to – \infty } \left( {\sqrt {{x^2} – 4x} + x} \right)\) \( = \mathop {\lim }\limits_{x \to – \infty } \frac{{{x^2} – 4x – {x^2}}}{{\sqrt {{x^2} – 4x} – x}}\) \( = \mathop {\lim }\limits_{x \to + \infty } \frac{{ – 4}}{{ – \sqrt {1 – \frac{4}{x}} – 1}} = 2.\)
Vậy khi \(x \to – \infty \) thì đồ thị có tiệm cận xiên là \(y = 3x + 2.\)
C. BÀI TẬP
1. Tìm các tiệm cận của đồ thị các hàm số sau:
a) \(y = \frac{{2x + 3}}{{4 – {x^2}}}.\)
b) \(y = \frac{{3{x^2} + 9x – 12}}{{{x^2} + x – 2}}.\)
c) \(y = 2x – 5 + \frac{2}{{3 – x}}.\)
d) \(y = \frac{{3{x^2} + 4x – 4}}{{x – 3}}.\)
2. Tìm các tiệm cận của đồ thị các hàm số sau:
a) \(y = 2x – 4 + \sqrt {{x^2} – 4x + 3} .\)
b) \(y = \frac{{x + 1}}{{\sqrt {{x^2} + 1} }}.\)
3. Cho \(\left( {{C_m}} \right):y = \frac{{2{x^2} + (m + 1)x – 3}}{{x + m}}.\)
a) Định \(m\) để tiệm cận xiên của \(\left( {{{\rm{C}}_m}} \right)\) đi qua \(A(1;5).\)
b) Tìm \(m\) để giao điểm \(2\) tiệm cận của \(\left( {{C_m}} \right)\) thuộc \((P):y = {x^2} – 3.\)
4. Cho \((C):y = \frac{{{x^2} – 2x – 15}}{{x – 3}}.\) Chứng minh rằng tích các khoảng cách từ điểm \(M\) bất kỳ trên \((C)\) đến hai tiệm cận của \((C)\) bằng một hằng số.
5. Cho \(\left( {{C_m}} \right):y = \frac{{{x^2} + mx – 1}}{{x – 1}}.\) Tìm \(m\) sao cho tiệm cận xiên của \(\left( {{C_m}} \right)\) tạo với hai trục toạ độ một tam giác có diện tích bằng \(2.\)
6. Tìm những điểm trên (C): \((C):y = \frac{{2{x^2} + x – 1 + 4\sqrt 5 }}{{x + 1}}\) sao cho tổng khoảng cách từ điểm đó đến hai tiệm cận là nhỏ nhất.
Bài toán bài toán tìm đường tiệm cận của đồ thị hàm số là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán bài toán tìm đường tiệm cận của đồ thị hàm số thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán bài toán tìm đường tiệm cận của đồ thị hàm số, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán bài toán tìm đường tiệm cận của đồ thị hàm số, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán bài toán tìm đường tiệm cận của đồ thị hàm số là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: bài toán tìm đường tiệm cận của đồ thị hàm số.