Logo Header
  1. Môn Toán
  2. bài toán biến đổi biểu thức chứa logarit

bài toán biến đổi biểu thức chứa logarit

Bài viết tổng hợp các công thức biến đổi logarit và hướng dẫn giải một số bài toán liên quan đến biến đổi biểu thức chứa logarit, đây là dạng toán cơ bản trong chương trình Giải tích 12 chương 2.

A. KIẾN THỨC CẦN NẮM VỮNG

1. So sánh hai logarit cũng cơ số: Cho số dương \(a \ne 1\) và các số dương \(b\), \(c\):

+ Khi \(a /> 1\) thì \({\log _a}b /> {\log _a}c \Leftrightarrow b /> c.\)

+ Khi \(0 < a < 1\) thì \({\log _a}b /> {\log _a}c \Leftrightarrow b < c.\)

Hệ quả: Cho số dương \(a \ne 1\) và các số dương \(b\), \(c\):

+ Khi \(a /> 1\) thì \({\log _a}b /> 0 \Leftrightarrow b /> 1.\)

+ Khi \(0 < a < 1\) thì \({\log _a}b /> 0 \Leftrightarrow b < 1.\)

+ \({\log _a}b = {\log _a}c \Leftrightarrow b = c.\)

2. Logarit của một tích: Cho ba số dương \(a\), \({b_1}\), \({b_2}\) với \(a \ne 1\), ta có: \({\log _a}\left( {{b_1}.{b_2}} \right) = {\log _a}{b_1} + {\log _a}{b_2}.\)

3. Logarit của một thương: Cho ba số dương \(a\), \({b_1}\), \({b_2}\) với \(a \ne 1\), ta có: \({\log _a}\frac{{{b_1}}}{{{b_2}}} = {\log _a}{b_1} – {\log _a}{b_2}.\) Đặc biệt: với \(a,b /> 0\), \(a \ne 1\), ta có \({\log _a}\frac{1}{b} = – {\log _a}b.\)

4. Logarit của lũy thừa: Cho \(a,b /> 0\), \(a \ne 1\), với mọi \(\alpha \), ta có: \({\log _a}{b^\alpha } = \alpha {\log _a}b.\) Đặc biệt: \({\log _a}\sqrt[n]{b} = \frac{1}{n}{\log _a}b.\)

5. Công thức đổi cơ số: Cho ba số dương \(a\), \(b\), \(c\) với \(a \ne 1\), \(c \ne 1\) ta có: \({\log _a}b = \frac{{{{\log }_c}b}}{{{{\log }_c}a}}.\) Đặc biệt: \({\log _a}c = \frac{1}{{{{\log }_c}a}}\) và \({\log _{{a^\alpha }}}b = \frac{1}{\alpha }{\log _a}b\) với \(\alpha \ne 0.\)

B. MỘT SỐ DẠNG TOÁN VÀ VÍ DỤ MINH HỌA

Dạng toán 1. Tính toán, rút gọn giá trị của một biểu thức chứa logarit.

Ví dụ 1
: Tính giá trị biểu thức: \(B = 2{\log _2}12 + 3{\log _2}5\) \( – {\log _2}15 – {\log _2}150.\)

Ta có: \(B = 2{\log _2}12 + 3{\log _2}5\) \( – {\log _2}15 – {\log _2}150\) \( = 2{\log _2}\left( {{2^2}.3} \right) + 3{\log _2}5\) \( – {\log _2}3.5 – {\log _2}\left( {{{2.3.5}^2}} \right)\) \( = 2\left( {2 + {{\log }_2}3} \right) + 3{\log _2}5\) \( – \left( {{{\log }_2}3 + {{\log }_2}5} \right)\) \( – \left( {1 + {{\log }_2}3 + 2{{\log }_2}5} \right)\) \( = 3.\)

Ví dụ 2: Cho \(a,b /> 0\) và \(a,b \ne 1\). Tính giá trị biểu thức \(P = {\log _{\sqrt a }}{b^2} + \frac{2}{{{{\log }_{\frac{a}{b}}}a}}.\)

Ta có: \(P = {\log _{\sqrt a }}{b^2} + \frac{2}{{{{\log }_{\frac{a}{{{b^2}}}}}a}}\) \( = 4{\log _a}b + 2{\log _a}\frac{a}{{{b^2}}}\) \( = 4{\log _a}b + 2\left( {{{\log }_a}a – {{\log }_a}{b^2}} \right) = 2.\)

Ví dụ 3: Cho \(a\), \(b\) là các số thực dương và \(ab \ne 1\) thỏa mãn \({\log _{ab}}{a^2} = 3\) thì giá trị của \({\log _{ab}}\sqrt[3]{{\frac{a}{b}}}\) bằng bao nhiêu?

\({\log _{ab}}\sqrt[3]{{\frac{a}{b}}} = \frac{1}{3}{\log _{ab}}\frac{a}{b} = \frac{1}{3}{\log _{ab}}\frac{{{a^2}}}{{ab}}\) \( = \frac{1}{3}\left( {{{\log }_{ab}}{a^2} – {{\log }_{ab}}ab} \right)\) \( = \frac{1}{3}\left( {{{\log }_{ab}}{a^2} – 1} \right).\)

Giả thiết \({\log _{ab}}{a^2} = 3\) nên \({\log _{ab}}\sqrt[3]{{\frac{a}{b}}} = \frac{1}{3}(3 – 1) = \frac{2}{3}.\)

Ví dụ 4: Cho \(x = 2000!\). Tính giá trị của biểu thức \(A = \frac{1}{{{{\log }_2}x}} + \frac{1}{{{{\log }_3}x}} + \ldots + \frac{1}{{{{\log }_{2000}}x}}.\)

Ta có \(A = {\log _x}2 + {\log _x}3 + \ldots + {\log _x}2000\) \( = {\log _x}(1.2.3…2000) = {\log _x}x = 1.\)

Ví dụ 5: Có tất cả bao nhiêu số dương \(a\) thỏa mãn đẳng thức \({\log _2}a + {\log _3}a + {\log _5}a\) \( = {\log _2}a.{\log _3}a.{\log _5}a?\)

\({\log _2}a + {\log _3}a + {\log _5}a\) \( = {\log _2}a.{\log _3}a.{\log _5}a\) \( \Leftrightarrow {\log _2}a + {\log _3}2.{\log _2}a + {\log _5}2.{\log _2}a\) \( = {\log _2}a.{\log _3}5.{\log _5}a.{\log _5}a\) \( \Leftrightarrow {\log _2}a.\left( {1 + {{\log }_3}2 + {{\log }_5}2} \right)\) \( = {\log _2}a.{\log _3}5.\log _5^2a\) \( \Leftrightarrow {\log _2}a.\left( {1 + {{\log }_3}2 + {{\log }_5}2 – {{\log }_3}5.\log _5^2a} \right) = 0\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}

{{{\log }_2}a = 0}\\

{1 + {{\log }_3}2 + {{\log }_5}2 – {{\log }_3}5.\log _5^2a = 0}

\end{array}} \right.\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}

{a = 1}\\

{{{\log }_5}a = \pm \sqrt {\frac{{1 + {{\log }_3}2 + {{\log }_5}2}}{{{{\log }_3}5}}} }

\end{array}} \right.\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}

{a = 1}\\

{a = {5^{\frac{{\sqrt {1 + {{\log }_3}2 + {{\log }_5}2} }}{{{{\log }_3}5}}}}}

\end{array}} \right.\)

Ví dụ 6: Tính giá trị của biểu thức \(P = \ln \left( {\tan {1^0}} \right) + \ln \left( {\tan {2^0}} \right) \) \(+ \ln \left( {\tan {3^0}} \right) + \ldots + \ln \left( {\tan {{89}^0 }} \right).\)

\(P = \ln \left( {\tan {1^0}} \right) + \ln \left( {\tan {2^0}} \right) \) \(+ \ln \left( {\tan {3^0}} \right) + \ldots + \ln \left( {\tan {{89}^0 }} \right)\) \( = \ln \left( {\tan {1^0 }.\tan {2^0 }.\tan {3^0 } \ldots \tan {{89}^0 }} \right)\) \( = \ln \left( {\tan {1^0 }.\tan {2^0 }.\tan {3^0 } \ldots \tan {{45}^0 }.\cot {{44}^0 }.\cot {{43}^0 } \ldots \cot {1^0 }} \right)\) \( = \ln \left( {\tan {{45}^0 }} \right) = \ln 1 = 0\) (vì \(\tan \alpha \cdot \cot \alpha = 1\)).

Ví dụ 7: Cho \(a\), \(b\) là các số thực dương thỏa mãn \(a \ne 1\), \(a \ne \sqrt b \) và \({\log _a}b = \sqrt 3 .\) Tính \(P = {\log _{\frac{{\sqrt b }}{a}}}\sqrt {\frac{b}{a}} .\)

\(P = \frac{{{{\log }_a}\sqrt {\frac{b}{a}} }}{{{{\log }_a}\frac{{\sqrt b }}{a}}} = \frac{{\frac{1}{2}\left( {{{\log }_a}b – 1} \right)}}{{{{\log }_a}\sqrt b – 1}}\) \( = \frac{{\frac{1}{2}(\sqrt 3 – 1)}}{{\frac{1}{2}{{\log }_a}b – 1}}\) \( = \frac{{\sqrt 3 – 1}}{{\sqrt 3 – 2}} = – 1 – \sqrt 3 .\)

Ví dụ 8: Tính giá trị của biểu thức \(P = {\log _{{a^2}}}\left( {{a^{10}}{b^2}} \right) + {\log _{\sqrt a }}\left( {\frac{a}{{\sqrt b }}} \right) + {\log _{\sqrt[3]{b}}}{b^{ – 2}}\) (với \(0 < a \ne 1\), \(0 < b \ne 1\)).

\(P = {\log _{{a^2}}}\left( {{a^{10}}{b^2}} \right)\) \( + {\log _{\sqrt a }}\left( {\frac{a}{{\sqrt b }}} \right) + {\log _{\sqrt[3]{b}}}{b^{ – 2}}\) \( = \frac{1}{2}\left[ {{{\log }_a}{a^{10}} + {{\log }_a}{b^2}} \right]\) \( + 2\left[ {{{\log }_a}a – {{\log }_a}\sqrt b } \right]\) \( + 3.( – 2){\log _b}b\) \( = \frac{1}{2}\left[ {10 + 2{{\log }_a}b} \right]\) \( + 2\left[ {1 – \frac{1}{2}{{\log }_a}b} \right] – 6 = 1.\)

Ví dụ 9: Cho \(a\), \(b\) là hai số thực dương khác \(1\) và thỏa mãn \(\log _a^2b – 8{\log _b}\left( {a\sqrt[3]{b}} \right) = – \frac{8}{3}\). Tính giá trị biểu thức \(P = {\log _a}\left( {a\sqrt[3]{{ab}}} \right) + 2017.\)

\(\log _a^2b – 8{\log _b}(a\sqrt[3]{b}) = – \frac{8}{3}\) \( \Leftrightarrow \log _a^2b – 8\left( {{{\log }_b}a + \frac{1}{3}} \right) = – \frac{8}{3}\) \( \Leftrightarrow \log _a^2b – \frac{8}{{{{\log }_a}b}} = 0\) \( \Leftrightarrow {\log _a}b = 2.\)

\(P = {\log _a}(a\sqrt[3]{{ab}}) + 2017\) \( = {\log _a}{a^{\frac{4}{3}}} + \frac{1}{3}{\log _a}b + 2017\) \( = \frac{4}{3} + \frac{2}{3} + 2017 = 2019.\)

Dạng toán 2. Biểu diễn một logarit theo các logarit cho trước.

Để tính \({\log _a}b\) theo \(m = {\log _a}x\), \(n = {\log _a}y\) ta biến đổi \(b = {a^\alpha }{x^\beta }{y^\gamma }\) từ đó suy ra \({\log _a}b = {\log _a}\left( {{a^\alpha }{x^\beta }{y^\gamma }} \right) = \alpha + m\beta + n\gamma .\)

Ví dụ 10: Cho \({\log _2}6 = a\). Tính giá trị của \({\log _3}18\) theo \(a\)?

Ta có: \(a = {\log _2}6 = {\log _2}(2.3)\) \( = 1 + {\log _2}3\) \( \Rightarrow {\log _3}2 = \frac{1}{{a – 1}}.\)

Suy ra \({\log _3}18 = {\log _3}\left( {{{2.3}^2}} \right) = {\log _3}2 + 2\) \( = \frac{1}{{a – 1}} + 2 = \frac{{2a – 1}}{{a – 1}}.\)

Ví dụ 11: Cho \(a = {\log _3}15\), \(b = {\log _3}10\). Tính giá trị của \({\log _{\sqrt 3 }}50\) theo \(a\), \(b\)?

Ta có \(a = {\log _3}15 = {\log _3}(3.5)\) \( = 1 + {\log _3}5\) \( \Rightarrow {\log _3}5 = a – 1.\)

Khi đó \({\log _{\sqrt 3 }}50 = 2{\log _3}(5.10)\) \( = 2\left( {{{\log }_3}5 + {{\log }_3}10} \right)\) \( = 2(a – 1 + b).\)

Ví dụ 12: Cho \({\log _{27}}5 = a\), \({\log _8}7 = b\), \({\log _2}3 = c.\) Tính giá trị của \({\log _6}35\) theo \(a\), \(b\), \(c\)?

Ta có:

\({\log _{27}}5 = a \Rightarrow {\log _3}5 = 3a.\)

\({\log _8}7 = b \Rightarrow {\log _2}7 = 3b.\)

\( \Rightarrow {\log _2}5 = {\log _2}3.{\log _3}5 = 3ac.\)

\( \Rightarrow {\log _6}35 = \frac{{{{\log }_2}35}}{{{{\log }_2}6}}\) \( = \frac{{{{\log }_2}5.{{\log }_2}7}}{{{{\log }_2}2.{{\log }_2}3}} = \frac{{3(ac + b)}}{{1 + c}}.\)

Ví dụ 13: Đặt \(a = {\log _2}3\), \(b = {\log _5}3.\) Hãy biểu diễn \({\log _6}45\) theo \(a\) và \(b.\)

Ta có: \({\log _6}45 = \frac{{{{\log }_2}45}}{{{{\log }_2}6}}\) \( = \frac{{{{\log }_2}{3^2}.5}}{{{{\log }_2}2.3}} = \frac{{2{{\log }_2}3 + {{\log }_2}5}}{{1 + {{\log }_2}3}}\) \( = \frac{{2{{\log }_2}3 + {{\log }_2}3.{{\log }_3}5}}{{1 + {{\log }_2}3}}\) \( = \frac{{2a + a.\frac{1}{b}}}{{1 + a}} = \frac{{a + 2ab}}{{ab + b}}.\)

Ví dụ 14: Biết \(a = {\log _2}5\), \(b = {\log _5}3\). Khi đó giá trị của \({\log _{24}}15\) được tính theo \(a\) và \(b\) là?

\({\log _{24}}15 = \frac{{{{\log }_2}15}}{{{{\log }_2}24}}\) \( = \frac{{{{\log }_2}3.5}}{{{{\log }_2}{{3.2}^3}}} = \frac{{{{\log }_2}3 + {{\log }_2}5}}{{{{\log }_2}3 + 3}}\) \( = \frac{{{{\log }_2}3 + {{\log }_2}3.{{\log }_3}5}}{{{{\log }_2}3 + 3}}\) \( = \frac{{a + a \cdot \frac{1}{b}}}{{3 + a}} = \frac{{a + ab}}{{ab + 3b}}.\)

Ví dụ 15: Cho \({\log _{12}}27 = a\). Khi đó giá trị của \({\log _6}16\) được tính theo \(a\) là?

Ta có \(a = {\log _{12}}27\) \( = \frac{{{{\log }_2}27}}{{{{\log }_2}12}} = \frac{{3{{\log }_2}3}}{{2 + {{\log }_2}3}}\) \( \Rightarrow {\log _2}3 = \frac{{2a}}{{3 – a}}\) \( \Rightarrow {\log _6}16 = \frac{{4(3 – a)}}{{3 + a}}.\)

Ví dụ 16: Cho \(a = {\log _2}3\), \(b = {\log _3}5\), \(c = {\log _7}2\). Khi đó giá trị của biểu thức \({\log _{140}}63\) được tính theo \(a\), \(b\), \(c\) là?

\({\log _{140}}63 = \frac{{{{\log }_2}63}}{{{{\log }_2}140}}\) \( = \frac{{{{\log }_2}{3^2}.7}}{{{{\log }_2}{2^2}5.7}}\) \( = \frac{{2{{\log }_2}3 + {{\log }_2}7}}{{2 + {{\log }_2}5 + {{\log }_2}7}}\) \( = \frac{{2{{\log }_2}3 + \frac{1}{{{{\log }_7}2}}}}{{2 + {{\log }_2}3.{{\log }_3}5 + {{\log }_7}2}}\) \( = \frac{{2a + \frac{1}{c}}}{{2 + ab + \frac{1}{c}}}\) \( = \frac{{1 + 2ac}}{{1 + 2c + abc}}.\)

Ví dụ 17: Cho số thực \(x\) thỏa mãn \(\log x = \frac{1}{2}\log 3a – 2\log b + 3\log \sqrt c \) (\(a\), \(b\), \(c\) là các số thực dương). Hãy biểu diễn \(x\) theo \(a\), \(b\), \(c.\)

Ta có \(\log x = \frac{1}{2}\log 3a – 2\log b + 3\log \sqrt c \) \( \Leftrightarrow \log x = \log \sqrt {3a} – \log {b^2} + \log \sqrt {{c^3}} \) \( \Leftrightarrow \log x = \log \frac{{\sqrt {3a{c^3}} }}{{{b^2}}}\) \( \Leftrightarrow x = \frac{{\sqrt {3a{c^3}} }}{{{b^2}}}.\)

Ví dụ 18: Cho \(a = {\log _4}3\), \(b = {\log _{25}}2\). Hãy tính \({\log _{60}}\sqrt {150} \) theo \(a\), \(b.\)

\({\log _{60}}\sqrt {150} = \frac{1}{2}\frac{{{{\log }_{25}}150}}{{{{\log }_{25}}60}}\) \( = \frac{1}{2}\frac{{{{\log }_{25}}25 + {{\log }_{25}}2 + {{\log }_{25}}3}}{{{{\log }_{25}}5 + {{\log }_{25}}4 + {{\log }_{25}}3}}\) \( = \frac{{1 + {{\log }_{25}}2 + 2{{\log }_4}3.{{\log }_{25}}2}}{{2{{\log }_{25}}5 + 4{{\log }_{25}}2 + 4{{\log }_4}3.{{\log }_{25}}2}}\) \( = \frac{{1 + a + 2ab}}{{1 + 4b + 4ab}}.\)

Ví dụ 19: Biết \({\log _{27}}5 = a\), \({\log _8}7 = b\), \({\log _2}3 = c\) thì \({\log _{12}}35\) tính theo \(a\), \(b\), \(c\) bằng?

Ta có \({\log _{27}}5 = \frac{1}{3}{\log _3}5 = a\) \( \Leftrightarrow {\log _3}5 = 3a\), \({\log _8}7 = \frac{1}{3}{\log _2}7 = b\) \( \Leftrightarrow {\log _2}7 = 3b.\)

Mà \({\log _{12}}35 = \frac{{{{\log }_2}(7.5)}}{{{{\log }_2}\left( {{{3.2}^2}} \right)}}\) \( = \frac{{{{\log }_2}7 + {{\log }_2}5}}{{{{\log }_2}3 + 2}}\) \( = \frac{{{{\log }_2}7 + {{\log }_2}3.{{\log }_3}5}}{{{{\log }_2}3 + 2}}\) \( = \frac{{3b + c.3a}}{{c + 2}} = \frac{{3(b + ac)}}{{c + 2}}.\)

Ví dụ 20: Cho \({\log _{12}}27 = a\) thì \({\log _6}16\) tính theo \(a\) là?

\(a = {\log _{12}}27\) \( = \frac{{{{\log }_3}27}}{{{{\log }_3}12}} = \frac{3}{{1 + 2{{\log }_3}2}}\) \( \Rightarrow {\log _3}2 = \frac{{3 – a}}{{2a}}.\)

\({\log _6}16 = \frac{{{{\log }_3}16}}{{{{\log }_3}6}}\) \( = \frac{{4{{\log }_3}2}}{{1 + {{\log }_3}2}}\) \( = \frac{{4\frac{{3 – a}}{{2a}}}}{{1 + \frac{{3 – a}}{{2a}}}}\) \( = \frac{{4(3 – a)}}{{a + 3}}.\)

Ví dụ 21: Xét các số thực \(a\), \(b\) thỏa mãn \(a /> b /> 1\). Tìm giá trị nhỏ nhất \({P_{\min }}\) của biểu thức \(P = \log _{\frac{a}{b}}^2\left( {{a^2}} \right) + 3{\log _b}\left( {\frac{a}{b}} \right).\)

Với điều kiện đề bài, ta có: \(P = \log _{\frac{a}{b}}^2\left( {{a^2}} \right) + 3{\log _b}\left( {\frac{a}{b}} \right)\) \( = {\left[ {2{{\log }_{\frac{a}{b}}}a} \right]^2} + 3{\log _b}\left( {\frac{a}{b}} \right)\) \( = 4{\left[ {{{\log }_{\frac{a}{b}}}\left( {\frac{a}{b}b} \right)} \right]^2} + 3{\log _b}\left( {\frac{a}{b}} \right).\)

Đặt \(t = {\log _{\frac{a}{b}}}b /> 0\) (vì \(a /> b /> 1\)), ta có \(P = 4{(1 + t)^2} + \frac{3}{t}\) \( = 4{t^2} + 8t + \frac{3}{t} + 4 = f(t).\)

Ta có \({f^\prime }(t) = 8t + 8 – \frac{3}{{{t^2}}}\) \( = \frac{{8{t^3} + 8{t^2} – 3}}{{{t^2}}}\) \( = \frac{{(2t – 1)\left( {4{t^2} + 6t + 3} \right)}}{{{t^2}}}.\)

Vậy \({f^\prime }(t) = 0 \Leftrightarrow t = \frac{1}{2}.\)

Khảo sát hàm số, ta có \({P_{\min }} = f\left( {\frac{1}{2}} \right) = 15.\)

Ví dụ 22: Biết \({\log _{27}}5 = a\), \({\log _8}7 = b\), \({\log _2}3 = c\) thì \({\log _{12}}35\) tính theo \(a\), \(b\), \(c\) bằng?

Ta có \({\log _{27}}5 = \frac{1}{3}{\log _3}5 = a\) \( \Leftrightarrow {\log _3}5 = 3a\), \({\log _8}7 = \frac{1}{3}{\log _2}7 = b\) \( \Leftrightarrow {\log _2}7 = 3b.\)

Mà \({\log _{12}}35 = \frac{{{{\log }_2}(7.5)}}{{{{\log }_2}\left( {{{3.2}^2}} \right)}}\) \( = \frac{{{{\log }_2}7 + {{\log }_2}5}}{{{{\log }_2}3 + 2}}\) \( = \frac{{{{\log }_2}7 + {{\log }_2}3.{{\log }_3}5}}{{{{\log }_2}3 + 2}}\) \( = \frac{{3b + c.3a}}{{c + 2}} = \frac{{3(b + ac)}}{{c + 2}}.\)

Ví dụ 23: Đặt \(a = {\log _3}4\), \(b = {\log _5}4\). Hãy biểu diễn \({\log _{12}}80\) theo \(a\) và \(b.\)

Ta có \({\log _{12}}80 = {\log _{12}}\left( {{4^2}.5} \right)\) \( = {\log _{12}}{4^2} + {\log _{12}}5\) \( = 2{\log _{12}}4 + \frac{1}{{{{\log }_5}12}}\) \( = \frac{2}{{{{\log }_4}12}} + \frac{1}{{{{\log }_5}4 + {{\log }_5}3}}\) \( = \frac{2}{{{{\log }_4}4 + {{\log }_4}3}} + \frac{1}{{b + {{\log }_5}3}}.\)

Từ \(a = {\log _3}4 \Rightarrow {\log _4}3 = \frac{1}{a}\) \( \Rightarrow {\log _5}3 = {\log _5}4.{\log _4}3\) \( = b.\frac{1}{a} = \frac{b}{a}.\)

\( \Rightarrow {\log _{12}}80 = \frac{2}{{1 + \frac{1}{a}}} + \frac{1}{{b + \frac{b}{a}}}\) \( = \frac{{2a}}{{a + 1}} + \frac{a}{{b(a + 1)}}\) \( = \frac{{a + 2ab}}{{ab + b}}.\)

Ví dụ 24: Cho \(a\), \(b\) là các số hữu tỉ thỏa mãn \({\log _2}\sqrt[6]{{360}} – {\log _2}\sqrt 2 \) \( = a{\log _2}3 + b{\log _2}5.\) Tính \(a + b.\)

Ta có \({\log _2}\sqrt[6]{{360}} – {\log _2}\sqrt 2 \) \( = {\log _2}\sqrt[6]{{360}} – {\log _2}\sqrt[6]{8}\) \( = {\log _2}\sqrt[6]{{\frac{{360}}{8}}} = \frac{1}{6}{\log _2}45\) \( = \frac{1}{3}{\log _2}3 + \frac{1}{6}{\log _2}5.\)

Theo đề bài ta có \({\log _2}\sqrt[6]{{360}} – {\log _2}\sqrt 2 \) \( = a{\log _2}3 + b{\log _2}5\) \( \Rightarrow \left\{ {\begin{array}{*{20}{l}}

{a = \frac{1}{3}}\\

{b = \frac{1}{6}}

\end{array}} \right.\) \( \Rightarrow a + b = \frac{1}{2}.\)

Giải bài toán bài toán biến đổi biểu thức chứa logarit: Phương Pháp, Mẹo Học Hiệu Quả và Ví Dụ Chi Tiết

Bài toán bài toán biến đổi biểu thức chứa logarit là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.

1. Tầm Quan Trọng Của Việc Giải Bài Toán bài toán biến đổi biểu thức chứa logarit

Bài toán bài toán biến đổi biểu thức chứa logarit thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.

  • Rèn luyện tư duy logic: Việc giải các bài toán thuộc dạng này giúp bạn phát triển khả năng tư duy phân tích, nhận biết mối quan hệ giữa các yếu tố trong bài toán.
  • Củng cố kiến thức: Qua quá trình luyện tập, bạn sẽ hiểu sâu hơn về các công thức, định lý, và phương pháp áp dụng.
  • Chuẩn bị cho kỳ thi: Việc làm quen với dạng bài này sẽ giúp bạn tự tin hơn khi bước vào phòng thi.

2. Phương Pháp Giải Bài Toán bài toán biến đổi biểu thức chứa logarit

Để giải hiệu quả bài toán bài toán biến đổi biểu thức chứa logarit, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:

Bước 1: Hiểu Đề Bài

  • Đọc kỹ đề bài để nắm bắt yêu cầu chính xác.
  • Xác định các yếu tố đã cho và cần tìm.
  • Phân tích mối liên hệ giữa các yếu tố.

Bước 2: Lựa Chọn Phương Pháp Giải

Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:

  • Phương pháp trực tiếp: Sử dụng các công thức hoặc định lý có sẵn để giải bài.
  • Phương pháp gián tiếp: Biến đổi bài toán về một dạng quen thuộc hoặc dễ xử lý hơn.
  • Sử dụng đồ thị: Trong trường hợp bài toán liên quan đến hàm số hoặc biểu đồ.

Bước 3: Triển Khai Lời Giải

  • Áp dụng công thức và phương pháp đã chọn.
  • Trình bày các bước giải rõ ràng, logic.
  • Kiểm tra lại từng bước để đảm bảo không có sai sót.

Bước 4: Kiểm Tra Kết Quả

  • So sánh kết quả với yêu cầu đề bài.
  • Đánh giá xem lời giải có đáp ứng đầy đủ yêu cầu chưa.

3. Những Mẹo Học Hiệu Quả Khi Giải Bài Toán bài toán biến đổi biểu thức chứa logarit

Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:

Mẹo 1: Nắm Vững Kiến Thức Cơ Bản

Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.

Mẹo 2: Luyện Tập Thường Xuyên

Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.

Mẹo 3: Phân Tích Sai Lầm

Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.

Mẹo 4: Sử Dụng Tài Liệu Tham Khảo

Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.

4. Ví Dụ Chi Tiết Về Bài Toán bài toán biến đổi biểu thức chứa logarit

Ví Dụ 1: Đề Bài Cụ Thể

Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”

Lời Giải:

  • 1. Phân tích đề bài: [Chi tiết phân tích các yếu tố]
  • 2. Sử dụng phương pháp: [Phương pháp áp dụng và lý do chọn phương pháp này]
  • 3. Triển khai từng bước:
    • Bước 1: [Mô tả bước đầu tiên]
    • Bước 2: [Mô tả bước tiếp theo]

4. Kết quả cuối cùng: [Đáp án và kiểm tra lại đáp án].

Ví Dụ 2: Bài Tập Nâng Cao

Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:

  • Đề bài: “Chứng minh rằng [nội dung đề bài nâng cao].”
  • Gợi ý lời giải: [Cách tiếp cận và các bước triển khai chi tiết].

5. Tài Liệu Hỗ Trợ Học Tập

Nếu bạn cần thêm tài liệu tham khảo để giải bài toán bài toán biến đổi biểu thức chứa logarit, dưới đây là một số nguồn hữu ích:

  • Sách tham khảo: Các sách chuyên đề về toán học.
  • Website học toán: Những trang web uy tín cung cấp bài tập và lời giải chi tiết.
  • Video bài giảng: Các kênh YouTube hoặc khóa học trực tuyến giúp bạn hiểu sâu hơn về phương pháp giải.

6. Lời Khuyên Từ Chuyên Gia

Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.

7. Kết Luận

Bài toán bài toán biến đổi biểu thức chứa logarit là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.

Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!

>> Xem thêm đáp án chi tiết về: bài toán biến đổi biểu thức chứa logarit.