Tiếp sau bài giảng sự đồng biến và nghịch biến của hàm số, https://giaibaitoan.com xin chia sẻ đến quý thầy, cô cùng các em học sinh tài liệu bài giảng cực trị của hàm số do thầy Phùng Hoàng Em biên soạn. Tài liệu gồm 16 trang được thiết kế để dạy và học trong vòng 2 buổi, bao gồm các lý thuyết cơ bản, dạng toán, hướng dẫn giải và các bài tập trắc nghiệm giúp các em nắm vững kiến thức, kỹ năng giải toán cực trị hàm số.
Khái quát nội dung tài liệu bài giảng cực trị của hàm số – Phùng Hoàng Em:
A. CÁC DẠNG TOÁN THƯỜNG GẶP
DẠNG 1. Ứng dụng đạo hàm (quy tắc 1) để tìm cực trị cực hàm số.
Phương pháp giải:
+ Giải phương trình y’ = 0 tìm các nghiệm xi và những điểm xj mà đạo hàm không xác định.
+ Đưa các nghiệm xi và xj lên bảng xét dấu và xét dấu y’.
+ Lập bảng biến thiên và nhìn “điểm dừng”: “Dừng” trên cao tại điểm (x1; y1) thì x1 là điểm cực đại của hàm số; y1 là giá trị cực đại (cực đại) của hàm số; (x1; y1) là tọa độ điểm cực đại của đồ thị. “Dừng” dưới thấp tại điểm (x2; y2) thì x2 là điểm cực tiểu của hàm số; y2 là giá trị cực tiểu (cực tiểu) của hàm số; (x2; y2) là tọa độ điểm cực tiểu của đồ thị.
DẠNG 2. Xác định cực trị khi biết bảng biến thiên hoặc đồ thị.
Phương pháp giải:
Loại 1: Cho bảng biến thiên hoặc đồ thị hàm y = f(x). Ta nhìn “điểm dừng”:
+ “Dừng” trên cao tại điểm (x1; y1) thì x1 là điểm cực đại của hàm số; y1 là giá trị cực đại (cực đại) của hàm số; (x1; y1) là tọa độ điểm cực đại của đồ thị.
+ “Dừng” dưới thấp tại điểm (x2; y2) thì x2 là điểm cực tiểu của hàm số; y2 là giá trị cực tiểu (cực tiểu) của hàm số; (x2; y2) là tọa độ điểm cực tiểu của đồ thị.
Loại 2: Cho đồ thị hàm f'(x). Ta thực hiện tương tự như ở phần đồng biến, nghịch biến.
DẠNG 3. Ứng dụng đạo hàm (quy tắc 2) để tìm cực trị cực hàm số.
Phương pháp giải: Chỉ dùng khi hàm số có đạo hàm cấp 2 tại x0. Ta thực hiện các bước:
Tính y’. Giải phương trình y’ = 0, tìm nghiệm x0.
Tính y”:
+ Nếu y”(x0) < 0 thì x0 là điểm cực đại của hàm số.
+ Nếu y”(x0) /> 0 thì x0 là điểm cực tiểu của hàm số.
DẠNG 4. Tìm m để hàm số đạt cực trị tại điểm x0 cho trước.
Phương pháp giải:
Giải điều kiện y'(x0) = 0, tìm m.
Thử lại với m vừa tìm được bằng một trong hai cách sau:
Cách 1: Lập bảng biến thiên với m vừa tìm được. Xem giá trị m nào thỏa yêu cầu.
Cách 2. Tính y”. Thử y”(x0) < 0 ⇒ x0 là điểm CĐ; y”(x0) /> 0 ⇒ x0 là điểm CT.
[ads]
DẠNG 5. Biện luận cực trị hàm bậc ba y = ax^3 + bx^2 + cx + d.
Phương pháp giải:
+ Biện luận nghiệm phương trình y’ = 0 (phương trình bậc hai).
+ Phương trình đường thẳng qua hai điểm cực trị.
DẠNG 6. Biện luận cực trị hàm trùng phương y = ax^4 + bx^2 + c.
Phương pháp giải:
Tính y’, giải phương trình y’ = 0.
Nhận xét:
+ Hàm số có ba điểm cực trị khi (1) có hai nghiệm khác 0. Suy ra ab < 0.
+ Hàm số có đúng một điểm cực trị ab ≥ 0 và a, b không đồng thời bằng 0.
Các công thức tính nhanh.
DẠNG 7. Tìm cực trị của hàm hợp, hàm liên kết.
Phương pháp giải:
Hàm hợp:
+ Đạo hàm hàm hợp y’ = f'(u).u’.
+ Giải nghiệm y’ = 0 (thường nhìn đồ thị f'(x)).
+ Lập bảng xét dấu y’ (bằng cách chọn giá trị đại diện của khoảng).
Hàm liên kết:
+ Đạo hàm y’.
+ Tìm nghiệm bằng hình ảnh đồ thị f'(x).
+ Lập bảng xét dấy y’ bằng cách nhìn vị trí của các đồ thị thành phần có liên quan.
DẠNG 8. Biện luận cực trị của hàm số y = ax^3 + bx^2 + cx + d.
Phương pháp giải:
+ Loại 1: Hàm số có hai điểm cực trị x1, x2 thỏa một hệ thức cho trước.
+ Loại 2: Câu hỏi liên quan đến tọa độ hai điểm cực trị (x1; y1) và (x2; y2). Thường loại toán này, phương trình y’ = 0 có nghiệm “đẹp”.
+ Đường thẳng qua hai điểm cực trị.
DẠNG 9. Biện luận cực trị của hàm số y = ax^4 + bx^2 + c.
Phương pháp giải:
+ Tính y’, giải phương trình y’ = 0.
+ Xác định tọa độ 3 điểm cực trị A(0; c), B, C theo m.
+ Biểu diễn điều kiện đề bài theo tham số m. Giải tìm m và đối chiếu điều kiện.
+ Các công thức tính nhanh.
B. BÀI TẬP TỰ LUYỆN: Gồm 60 bài tập trắc nghiệm chọn lọc chủ đề cực trị của hàm số.
Bài toán bài giảng cực trị của hàm số – phùng hoàng em là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán bài giảng cực trị của hàm số – phùng hoàng em thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán bài giảng cực trị của hàm số – phùng hoàng em, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán bài giảng cực trị của hàm số – phùng hoàng em, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán bài giảng cực trị của hàm số – phùng hoàng em là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: bài giảng cực trị của hàm số – phùng hoàng em.