Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số là một trong những nội dung rất quan trọng trong chương trình Giải tích 12, đây là chủ đề chiếm tỉ trọng điểm cao nhất trong đề thi Trung học Phổ thông Quốc gia môn Toán, với các bài toán trắc nghiệm trải dài từ mức cơ bản đến nâng cao, đòi hỏi học sinh cần nắm chắc lý thuyết, thuần thục phương pháp, kĩ năng giải bài toán hàm số và đồ thị.
Hiểu được tầm quan trọng của chủ đề này, https://giaibaitoan.com sưu tầm và giới thiệu đến quý thầy, cô giáo cùng các em học sinh tài liệu chuyên đề ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số. Tài liệu gồm 88 trang tóm tắt các lý thuyết trọng tâm, phân dạng và tuyển chọn các bài tập tự luận – trắc nghiệm từ cơ bản đến nâng cao giúp học sinh tự học chuyên đề ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số trong chương trình Giải tích 12 chương 1.
[ads]
Khái quát nội dung tài liệu ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số:
Vấn đề 1. TÍNH CHẤT ĐƠN ĐIỆU CỦA HÀM SỐ
+ Dạng toán 1: Xét tính đơn điệu của hàm số.
+ Dạng toán 2: Tìm tham số m để hàm số y = (ax + b)/(cx + d) đồng biến hoặc nghịch biến.
+ Dạng toán 3: Tìm m để hàm số y = ax3 + bx2 + cx + d luôn đồng biến, nghịch biến.
+ Dạng toán 4: Tìm m để hàm số y = f(x) đồng biến, nghịch biến trên (a; b).
+ Dạng toán 5: Tìm m để phương trình, bất phương trình có nghiệm.
Vấn đề 2. CỰC TRỊ CỦA HÀM SỐ
+ Dạng toán 1: Tìm cực trị hàm bậc ba, hàm trùng phương.
+ Dạng toán 2: Tìm tham số: y = ax3 + bx2 + cx + d có cực trị.
+ Dạng toán 3: Tìm tham số: y = ax3 + bx2 + cx + d không có cực trị.
+ Dạng toán 4: Tìm tham số: y = ax4 + bx2 + c có 3 cực trị hoặc 1 cực trị.
+ Dạng toán 5: Tìm tham số để y = ax3 + bx2 + cx + d đạt cực trị tại x = x0.
+ Dạng toán 6: Tìm tham số để hàm số có cực trị thoả điều kiện cho trước.
Vấn đề 3. GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ
+ Dạng toán 1: Tìm GTLN và GTNN của hàm số y = f(x) trên [a; b].
+ Dạng toán 2: Tìm GTLN và GTNN của hàm số y = f(x) trên khoảng.
+ Dạng toán 3: Ứng dụng GTLN – GTNN trong giải phương trình, bất phương trình.
+ Dạng toán 4: Ứng dụng GTLN – GTNN của hàm số vào bài toán thực tế.
Vấn đề 4. ĐƯỜNG TIỆM CẬN CỦA HÀM SỐ
+ Dạng toán 1: Tìm tiệm cận đứng, ngang của đồ thị hàm số.
+ Dạng toán 2: Tìm tiệm cận xiên của đồ thị hàm số.
Vấn đề 5. KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ
+ Dạng toán 1: Khảo sát sự biến thiên hàm số y = ax3 + bx2 + cx + d.
+ Dạng toán 2: Khảo sát sự biến thiên và vẽ đồ thị hàm số y = ax4 + bx2 + c.
+ Dạng toán 3: Khảo sát sự biến thiên và vẽ đồ thị hàm số y = (ax + b)/(cx + d).
Vấn đề 6. SỰ TƯƠNG GIAO CỦA HAI ĐỒ THỊ HÀM SỐ
+ Dạng toán 1: Tìm toạ độ giao điểm của (C1): y = f(x) và (C2): y = g(x).
+ Dạng toán 2: Tìm tham số (C): y = (ax + b)/(cx + d) cắt đường thẳng d tại hai điểm.
+ Dạng toán 3: Tìm tham số y = ax3 + bx2 + cx + d cắt đường thẳng tại ba điểm.
+ Dạng toán 4: Tìm tham số (C): y = ax4 + bx2 + c cắt đường thẳng tại 4 điểm.
+ Dạng toán 5: Tìm m để (C): y = f(x) cắt d tại n điểm thoả tính chất nào đó.
Vấn đề 7. TIẾP TUYẾN CỦA ĐỒ THỊ HÀM SỐ
+ Dạng toán 1: Tiếp tuyến của đồ thị hàm số (C): y = f(x) tại M(x0; y0).
+ Dạng toán 2: Tiếp tuyến của đồ thị hàm số y = f(x) có cho trước.
+ Dạng toán 3: Tiếp tuyến của đồ thị hàm số y = f(x) đi qua điểm M(x0; y0).
Vấn đề 8. DÙNG ĐỒ THỊ BIỆN LUẬN SỐ NGHIỆM CỦA PHƯƠNG TRÌNH.
Vấn đề 9. ĐIỂM CÓ TOẠ ĐỘ NGUYÊN.
BÀI TẬP TRẮC NGHIỆM: Tuyển chọn 234 bài tập trắc nghiệm ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số.
Bài toán ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số.