Logo Header
  1. Môn Toán
  2. phương pháp quy nạp toán học

phương pháp quy nạp toán học

Bài viết hướng dẫn dùng phương pháp quy nạp toán học để chứng minh các dạng toán về đẳng thức, bất đẳng thức, tính chia hết trong số học, một số bài toán hình học …

Phương pháp quy nạp toán học

Cho bài toán: Chứng minh mệnh đề \(P(n)\) đúng với mọi số tự nhiên \(n\ge {{n}_{0}},\) \({{n}_{0}}\in N\).

Ta có thể sử dụng phương pháp quy nạp toán học như sau:

Bước 1: Kiểm tra \(P({{n}_{0}})\) có đúng hay không, nếu bước này đúng thì ta chuyển qua bước 2.

Bước 2: Với \(k \in N, k\ge {{n}_{0}}\), giả sử \(P(k)\) đúng ta cần chứng minh \(P(k+1)\) cũng đúng.

Kết luận: \(P(n)\) đúng với \(\forall n\ge {{n}_{0}}\).

Các dạng toán và ví dụ minh họa

Dạng toán 1. Dùng phương pháp quy nạp toán học chứng minh đẳng thức

Ví dụ 1. Chứng mình với mọi số tự nhiên \(n \ge 1\) ta luôn có: \(1 + 2 + 3 + … + n = \frac{{n(n + 1)}}{2}.\)

Đặt \(P(n) = 1 + 2 + 3 + … + n\) và \(Q(n) = \frac{{n(n + 1)}}{2}\).

Ta cần chứng minh \(P(n) = Q(n)\), \(\forall n \in N, n \ge 1\).

+ Bước 1: Với \(n = 1\) ta có \(P(1) = 1\), \(Q(1) = \frac{{1(1 + 1)}}{2} = 1\) \( \Rightarrow P(1) = Q(1)\) \(⇒ P(n) = Q(n)\) đúng với \(n = 1.\)

+ Bước 2: Giả sử \(P(k) = Q(k)\) với \(k \in N, k \ge 1\) tức là: \(1 + 2 + 3 + … + k = \frac{{k(k + 1)}}{2}\).

Ta cần chứng minh \(P(k + 1) = Q(k + 1)\), tức là: \(1 + 2 + 3 + … + k + (k + 1)\) \( = \frac{{(k + 1)(k + 2)}}{2}\) \((*).\)

Thật vậy: \(VT(*)\) \(= (1 + 2 + 3 + … + k) + (k + 1)\) \( = \frac{{k(k + 1)}}{2} + (k + 1)\) \( = (k + 1)(\frac{k}{2} + 1)\) \( = \frac{{(k + 1)(k + 2)}}{2}\) \( = VP(*)\)

Vậy đẳng thức cho đúng với mọi \(n \ge 1.\)

Ví dụ 2. Chứng minh với mọi số tự nhiên \(n \ge 1\) ta luôn có: \(1 + 3 + 5 + … + 2n – 1 = {n^2}.\)

+ Với \(n = 1\) ta có \(VT = 1\), \(VP = {1^2} = 1\), suy ra \(VT = VP\) \( \Rightarrow \) đẳng thức cho đúng với \(n = 1.\)

+ Giả sử đẳng thức đã cho đúng với \(n = k\) với \(k \in N, k \ge 1\), tức là: \(1 + 3 + 5 + … + 2k – 1 = {k^2}.\)

Ta cần chứng minh đẳng thức đã cho đúng với \(n = k + 1\), tức là: \(1 + 3 + 5 + … + (2k – 1) + (2k + 1)\) \( = {\left( {k + 1} \right)^2}\) \((*).\)

Thật vậy: \(VT(*)\) \( = (1 + 3 + 5 + … + 2k – 1) + (2k + 1)\) \( = {k^2} + (2k + 1)\) \( = {(k + 1)^2}\) \( = VP(*)\)

Vậy đẳng thức đã cho đúng với mọi \(n \ge 1.\)

Dạng toán 2. Dùng phương pháp quy nạp toán học chứng minh bất đẳng thức

Ví dụ 3. Chứng minh rằng \(\forall n \ge 1\), ta có bất đẳng thức: \(\frac{{1.3.5…\left( {2n – 1} \right)}}{{2.4.6.2n}} < \frac{1}{{\sqrt {2n + 1} }}.\)

+ Với \(n = 1\) ta có bất đẳng thức đã cho trở thành \(\frac{1}{2} < \frac{1}{{\sqrt 3 }} \Leftrightarrow 2 /> \sqrt 3 \) (đúng) \( \Rightarrow \) bất đẳng thức đã cho đúng với \(n = 1.\)

+ Giả sử bất đẳng thức đã cho đúng với \(n = k \ge 1\), tức là: \(\frac{{1.3.5…\left( {2k – 1} \right)}}{{2.4.6…2k}} < \frac{1}{{\sqrt {2k + 1} }}.\)

Ta phải chứng minh bất đẳng thức đã cho đúng với \(n = k + 1\), tức là: \(\frac{{1.3.5…\left( {2k – 1} \right)\left( {2k + 1} \right)}}{{2.4.6….2k\left( {2k + 2} \right)}}\) \( < \frac{1}{{\sqrt {2k + 3} }}\).

Thật vậy, ta có: \(\frac{{1.3.5…\left( {2k – 1} \right)\left( {2k + 1} \right)}}{{2.4.6….2k\left( {2k + 2} \right)}}\) \( = \frac{{1.3.5…(2k – 1)}}{{2.4.6…2k}}.\frac{{2k + 1}}{{2k + 2}}\) \( < \frac{1}{{\sqrt {2k + 1} }}\frac{{2k + 1}}{{2k + 2}}\) \( = \frac{{\sqrt {2k + 1} }}{{2k + 2}}.\)

Ta chứng minh: \(\frac{{\sqrt {2k + 1} }}{{2k + 2}} < \frac{1}{{\sqrt {2k + 3} }}\) \( \Leftrightarrow (2k + 1)(2k + 3) < {(2k + 2)^2}\) \( \Leftrightarrow 3 /> 1\) (luôn đúng).

Vậy bất đẳng thức đã cho đúng với mọi số tự nhiên \(n \ge 1.\)

Ví dụ 4. Chứng minh rằng với \(\forall n \ge 1, \forall x /> 0\) ta có bất đẳng thức: \(\frac{{{x^n}({x^{n + 1}} + 1)}}{{{x^n} + 1}} \le {\left( {\frac{{x + 1}}{2}} \right)^{2n + 1}}\). Đẳng thức xảy ra khi nào?

+ Với \(n = 1\) ta cần chứng minh: \(\frac{{x({x^2} + 1)}}{{x + 1}} \le {\left( {\frac{{x + 1}}{2}} \right)^3}\) \( \Leftrightarrow 8x({x^2} + 1) \le {(x + 1)^4}.\)

Tức là: \({x^4} – 4{x^3} + 6{x^2} – 4x + 1 \ge 0\) \( \Leftrightarrow {(x – 1)^4} \ge 0\) (đúng).

+ Giả sử \(\frac{{{x^k}({x^{k + 1}} + 1)}}{{{x^k} + 1}} \le {\left( {\frac{{x + 1}}{2}} \right)^{2k + 1}}\), ta chứng minh: \(\frac{{{x^{k + 1}}({x^{k + 2}} + 1)}}{{{x^{k + 1}} + 1}} \le {\left( {\frac{{x + 1}}{2}} \right)^{2k + 3}}\) \((*).\)

Thật vậy, ta có: \({\left( {\frac{{x + 1}}{2}} \right)^{2k + 3}}\) \( = {\left( {\frac{{x + 1}}{2}} \right)^2}{\left( {\frac{{x + 1}}{2}} \right)^{2k + 1}}\) \( \ge {\left( {\frac{{x + 1}}{2}} \right)^2}\frac{{{x^k}({x^{k + 1}} + 1)}}{{{x^k} + 1}}.\)

Nên để chứng minh \((*)\) ta chỉ cần chứng minh \({\left( {\frac{{x + 1}}{2}} \right)^2}\frac{{{x^k}({x^{k + 1}} + 1)}}{{{x^k} + 1}}\) \( \ge \frac{{{x^{k + 1}}({x^{k + 2}} + 1)}}{{{x^{k + 1}} + 1}}.\)

Hay \({\left( {\frac{{x + 1}}{2}} \right)^2}{({x^{k + 1}} + 1)^2}\) \( \ge x({x^{k + 2}} + 1)({x^k} + 1)\) \((**).\)

Khai triển \((**)\), biến đổi và rút gọn ta thu được: \({x^{2k + 2}}{(x – 1)^2}\) \( – 2{x^{k + 1}}{(x – 1)^2} + {(x – 1)^2} \ge 0\) \( \Leftrightarrow {(x – 1)^2}{({x^{k + 1}} – 1)^2} \ge 0\), bất đẳng thức này hiển nhiên đúng.

Đẳng thức xảy ra \( \Leftrightarrow x = 1.\)

Vậy bài toán được chứng minh.

Dạng toán 3. Dùng phương pháp quy nạp toán học chứng minh bài toán chia hết

Ví dụ 5. Cho \(n\) là số tự nhiên dương. Chứng minh rằng: \({a_n} = {16^n} – 15n – 1 \vdots 225\).

+ Với \(n = 1\) ta có: \({a_1} = 0 \Rightarrow {a_1} \vdots 225.\)

+ Giả sử \({a_k} = {16^k} – 15k – 1 \vdots 225\), ta chứng minh: \({a_{k + 1}} = {16^{k + 1}} – 15(k + 1) – 1 \vdots 225.\)

Thật vậy: \({a_{k + 1}} = {16.16^k} – 15k – 16\) \( = {16^k} – 15k – 1 – 15\left( {{{16}^k} – 1} \right)\) \( = {a_k} – 15\left( {{{16}^k} – 1} \right).\)

Vì \({16^k} – 1\) \( = 15.\left( {{{16}^{k – 1}} + {{16}^{k – 2}} + … + 1} \right) \vdots 15\) và \({a_k} \vdots 225.\)

Nên ta suy ra \({a_{k + 1}} \vdots 225.\)

Vậy bài toán được chứng minh.

Ví dụ 6. Chứng minh rằng với mọi số tự nhiên \(n \ge 1\) thì \(A(n) = {7^n} + 3n – 1\) luôn chia hết cho \(9.\)

+ Với \(n = 1\) \( \Rightarrow A(1) = {7^1} + 3.1 – 1 = 9\) \( \Rightarrow A(1) \vdots 9.\)

+ Giả sử \(A(k) \vdots 9\), \(\forall k \ge 1\), ta chứng minh \(A(k + 1) \vdots 9.\)

Thật vậy: \(A(k + 1) = {7^{k + 1}} + 3(k + 1) – 1\) \( = {7.7^k} + 21k – 7 – 18k + 9\)

\( \Rightarrow A(k + 1) = 7A(k) – 9(2k – 1)\).

Vì \(\left\{ \begin{array}{l}

A(k) \vdots 9\\

9(2k – 1) \vdots 9

\end{array} \right. \Rightarrow A(k + 1) \vdots 9.\)

Vậy \(A(n)\) chia hết cho \(9\) với mọi số tự nhiên \(n \ge 1.\)

Ví dụ 7. Cho \(n\) là số tự nhiên dương. Chứng minh rằng: \({B_n} = \left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right) \ldots .\left( {3n} \right)\) \( \vdots {3^n}.\)

+ Với \(n = 1\), ta có: \({B_1} = 2.3 \vdots 3.\)

+ Giả sử mệnh đề đúng với \(n = k\), tức là: \({B_k} \) \(= \left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right) \ldots \left( {3k} \right) \vdots {3^k}.\)

Ta chứng minh: \({B_{k + 1}} = \left( {k + 2} \right)\left( {k + 3} \right)\left( {k + 4} \right)\) \( \ldots \left[ {3\left( {k{\rm{ }} + {\rm{ }}1} \right)} \right] \vdots {3^{k + 1}}.\)

Ta có: \({B_{k + 1}} = 3\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right)\) \( \ldots \left( {3k} \right)\left( {3k + 1} \right)\left( {3k + 2} \right)\) \( = 3{B_k}\left( {3k + 1} \right)\left( {3k + 2} \right).\)

Mà \({B_k} \vdots {3^k}\) nên suy ra \({B_{k + 1}} \vdots {3^{k + 1}}.\)

Vậy bài toán được chứng minh.

Dạng toán 4. Dùng phương pháp quy nạp toán học chứng minh tính chất hình học

Ví dụ 8. Trong mặt mặt phẳng cho \(n\) điểm rời nhau \((n /> 2)\) tất cả không nằm trên một đường thẳng. Chứng minh rằng tất cả các đường thẳng nối hai điểm trong các điểm đã cho tạo ra số đường thẳng khác nhau không nhỏ hơn \(n.\)

Giả sử mệnh đề đúng với \(n=k\ge 3\) điểm.

Ta chứng minh nó cũng đúng cho \(n=k+1\) điểm.

Ta có thể chứng minh rằng tồn tại ít nhất một đường thẳng chỉ chứa có hai điểm. Ta kí hiệu đường thẳng đi qua hai điểm \({{A}_{n}}\) và \({{A}_{n+1}}\) là \({{A}_{n}}{{A}_{n+1}}\). Nếu những điểm \({{A}_{1}},{{A}_{2}},…,{{A}_{n}}\) nằm trên một đường thẳng thì số lượng các đường thẳng sẽ đúng là \(n+1\): Gồm \(n\) đường thẳng nối \({{A}_{n+1}}\) với các điểm \({{A}_{1}},{{A}_{2}},…,{{A}_{n}}\) và đường thẳng chúng nối chung. Nếu \({{A}_{1}},{{A}_{2}},…,{{A}_{n}}\) không nằm trên một đường thẳng thì theo giả thiết quy nạp có \(n\) đường thẳng khác nhau. Bây giờ ta thêm các đường thẳng nối \({{A}_{n+1}}\) với các điểm \({{A}_{1}},{{A}_{2}},…,{{A}_{n}}\). Vì đường thẳng \({{A}_{n}}{{A}_{n+1}}\) không chứa một điểm nào trong \({{A}_{1}},{{A}_{2}},…,{{A}_{n-1}}\), nên đường thẳng này khác hoàn toàn với \(n\) đường thẳng tạo ra bởi \({{A}_{1}},{{A}_{2}},…,{{A}_{n}}\). Như vậy số đường thẳng tạo ra cũng không nhỏ hơn \(n+1\).

Ví dụ 9. Chứng minh rằng tổng các trong một \(n\)-giác lồi \((n\ge 3)\) bằng \((n-2){{180}^{0}}\).

+ Với \(n=3\) ta có tổng ba góc trong tam giác bằng \({{180}^{0}}.\)

+ Giả sử công thức đúng cho tất cả \(k\)-giác, với \(k<n\), ta phải chứng minh mệnh đề cũng đúng cho \(n\)-giác. Ta có thể chia \(n\)-giác bằng một đường chéo thành ra hai đa giác. Nếu số cạnh của một đa giác là \(k+1\), thì số cạnh của đa giác kia là \(n – k + 1\), hơn nữa cả hai số này đều nhỏ hơn \(n\). Theo giả thiết quy nạp tổng các góc của hai đa giác này lần lượt là \(\left( k-1 \right){{180}^{0}}\) và \(\left( n-k-1 \right){{180}^{0}}.\)

Tổng các góc của \(n\)-giác bằng tổng các góc của hai đa giác trên, nghĩa là \(\left( {k–1 + n – k–1} \right){180^0}\) \( = \left( {n – 2} \right){180^0}.\)

Suy ra mệnh đề đúng với mọi \(n\ge 3.\)

images-post/phuong-phap-quy-nap-toan-hoc-nguyen-huu-dien-001.jpgimages-post/phuong-phap-quy-nap-toan-hoc-nguyen-huu-dien-002.jpgimages-post/phuong-phap-quy-nap-toan-hoc-nguyen-huu-dien-003.jpgimages-post/phuong-phap-quy-nap-toan-hoc-nguyen-huu-dien-004.jpgimages-post/phuong-phap-quy-nap-toan-hoc-nguyen-huu-dien-005.jpgimages-post/phuong-phap-quy-nap-toan-hoc-nguyen-huu-dien-006.jpgimages-post/phuong-phap-quy-nap-toan-hoc-nguyen-huu-dien-007.jpgimages-post/phuong-phap-quy-nap-toan-hoc-nguyen-huu-dien-008.jpgimages-post/phuong-phap-quy-nap-toan-hoc-nguyen-huu-dien-009.jpgimages-post/phuong-phap-quy-nap-toan-hoc-nguyen-huu-dien-010.jpg

File phương pháp quy nạp toán học PDF Chi Tiết

Giải bài toán phương pháp quy nạp toán học: Phương Pháp, Mẹo Học Hiệu Quả và Ví Dụ Chi Tiết

Bài toán phương pháp quy nạp toán học là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.

1. Tầm Quan Trọng Của Việc Giải Bài Toán phương pháp quy nạp toán học

Bài toán phương pháp quy nạp toán học thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.

  • Rèn luyện tư duy logic: Việc giải các bài toán thuộc dạng này giúp bạn phát triển khả năng tư duy phân tích, nhận biết mối quan hệ giữa các yếu tố trong bài toán.
  • Củng cố kiến thức: Qua quá trình luyện tập, bạn sẽ hiểu sâu hơn về các công thức, định lý, và phương pháp áp dụng.
  • Chuẩn bị cho kỳ thi: Việc làm quen với dạng bài này sẽ giúp bạn tự tin hơn khi bước vào phòng thi.

2. Phương Pháp Giải Bài Toán phương pháp quy nạp toán học

Để giải hiệu quả bài toán phương pháp quy nạp toán học, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:

Bước 1: Hiểu Đề Bài

  • Đọc kỹ đề bài để nắm bắt yêu cầu chính xác.
  • Xác định các yếu tố đã cho và cần tìm.
  • Phân tích mối liên hệ giữa các yếu tố.

Bước 2: Lựa Chọn Phương Pháp Giải

Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:

  • Phương pháp trực tiếp: Sử dụng các công thức hoặc định lý có sẵn để giải bài.
  • Phương pháp gián tiếp: Biến đổi bài toán về một dạng quen thuộc hoặc dễ xử lý hơn.
  • Sử dụng đồ thị: Trong trường hợp bài toán liên quan đến hàm số hoặc biểu đồ.

Bước 3: Triển Khai Lời Giải

  • Áp dụng công thức và phương pháp đã chọn.
  • Trình bày các bước giải rõ ràng, logic.
  • Kiểm tra lại từng bước để đảm bảo không có sai sót.

Bước 4: Kiểm Tra Kết Quả

  • So sánh kết quả với yêu cầu đề bài.
  • Đánh giá xem lời giải có đáp ứng đầy đủ yêu cầu chưa.

3. Những Mẹo Học Hiệu Quả Khi Giải Bài Toán phương pháp quy nạp toán học

Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:

Mẹo 1: Nắm Vững Kiến Thức Cơ Bản

Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.

Mẹo 2: Luyện Tập Thường Xuyên

Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.

Mẹo 3: Phân Tích Sai Lầm

Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.

Mẹo 4: Sử Dụng Tài Liệu Tham Khảo

Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.

4. Ví Dụ Chi Tiết Về Bài Toán phương pháp quy nạp toán học

Ví Dụ 1: Đề Bài Cụ Thể

Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”

Lời Giải:

  • 1. Phân tích đề bài: [Chi tiết phân tích các yếu tố]
  • 2. Sử dụng phương pháp: [Phương pháp áp dụng và lý do chọn phương pháp này]
  • 3. Triển khai từng bước:
    • Bước 1: [Mô tả bước đầu tiên]
    • Bước 2: [Mô tả bước tiếp theo]

4. Kết quả cuối cùng: [Đáp án và kiểm tra lại đáp án].

Ví Dụ 2: Bài Tập Nâng Cao

Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:

  • Đề bài: “Chứng minh rằng [nội dung đề bài nâng cao].”
  • Gợi ý lời giải: [Cách tiếp cận và các bước triển khai chi tiết].

5. Tài Liệu Hỗ Trợ Học Tập

Nếu bạn cần thêm tài liệu tham khảo để giải bài toán phương pháp quy nạp toán học, dưới đây là một số nguồn hữu ích:

  • Sách tham khảo: Các sách chuyên đề về toán học.
  • Website học toán: Những trang web uy tín cung cấp bài tập và lời giải chi tiết.
  • Video bài giảng: Các kênh YouTube hoặc khóa học trực tuyến giúp bạn hiểu sâu hơn về phương pháp giải.

6. Lời Khuyên Từ Chuyên Gia

Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.

7. Kết Luận

Bài toán phương pháp quy nạp toán học là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.

Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!

>> Xem thêm đáp án chi tiết về: phương pháp quy nạp toán học.