https://giaibaitoan.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp tỉnh THPT môn Toán 10 chuyên đợt 2 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào thứ Tư ngày 15 tháng 03 năm 2023.
Trích dẫn Đề học sinh giỏi tỉnh Toán 10 chuyên đợt 2 năm 2022 – 2023 sở GD&ĐT Quảng Nam:
+ Cho đa thức f(x) với hệ số nguyên và a2023 khác 0 xác định trên tập số thực R. Chứng minh rằng phương trình f2(x) = 4 có số nghiệm nguyên không lớn hơn 2026.
+ Cho ABC là tam giác nhọn, D là điểm bất kỳ trên cạnh BC thỏa AB /> AD; AC /> AD. Trên các cạnh AC, AB lần lượt lấy các điểm E, F sao cho EC = ED, FB = FD. Gọi I, J, K lần lượt là tâm đường tròn nội tiếp các tam giác ABC, BDF, CDE. Gọi H là trực tâm của tam giác JDK. Chứng minh tứ giác IJHK nội tiếp. b) Cho tam giác nhọn ABC (AB < BC) có đường cao AK. Gọi điểm D trên cạnh AC thỏa AD/DC = BK/BC, điểm E di động trên đoạn DC. Gọi F là giao điểm của BE và KD, I là giao điểm của FC và KE. Chứng minh rằng điểm I thuộc đường thẳng cố định.
+ Cho đa giác đều n cạnh (n thuộc N; n ≥ 8). Gọi x; y lần lượt là số tam giác và số tứ giác lập ra từ các đường chéo của đa giác đều đã cho. Tìm n biết x = 2y.
Bài toán đề học sinh giỏi tỉnh toán 10 chuyên đợt 2 năm 2022 – 2023 sở gd&đt quảng nam là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán đề học sinh giỏi tỉnh toán 10 chuyên đợt 2 năm 2022 – 2023 sở gd&đt quảng nam thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán đề học sinh giỏi tỉnh toán 10 chuyên đợt 2 năm 2022 – 2023 sở gd&đt quảng nam, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề học sinh giỏi tỉnh toán 10 chuyên đợt 2 năm 2022 – 2023 sở gd&đt quảng nam, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán đề học sinh giỏi tỉnh toán 10 chuyên đợt 2 năm 2022 – 2023 sở gd&đt quảng nam là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: đề học sinh giỏi tỉnh toán 10 chuyên đợt 2 năm 2022 – 2023 sở gd&đt quảng nam.