Tài liệu gồm 64 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tổng hợp lý thuyết chung và hướng dẫn giải các dạng bài tập chuyên đề ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12 phần Giải tích chương 1.
Chủ đề 01. ĐƠN ĐIỆU HÀM SỐ.
+ Dạng 1.1. Xét tính đơn điệu của hàm số (biết đồ thị hoặc bảng biến thiên) 4.
+ Dạng 1.2. Hàm số bậc ba đơn điệu trên khoảng k 5.
+ Dạng 1.3. Hàm số phân thức đơn điệu trên khoảng k 7.
+ Dạng 1.4. Hàm hợp y = f(u(x)) 8.
+ Dạng 1.5. Hàm hợp y = g(x) + h(x) 10.
+ Dạng 1.6. Ứng dụng phương pháp hàm số 11.
Chủ đề 02. CỰC TRỊ.
+ Dạng 2.1. Tìm cực trị của hàm số y = f(x) khi cho bảng biến thiên hoặc đồ thị 17.
+ Dạng 2.2. Tìm cực trị của hàm số tường minh 18.
+ Dạng 2.3. Tìm m để hàm số y = f(x) đạt cực trị tại x0 19.
+ Dạng 2.4. Tìm m để hàm số y = f(x) có n cực trị 20.
+ Dạng 2.5. Đường thẳng qua hai điểm cực trị 21.
+ Dạng 2.6. Cực trị hàm bậc ba thỏa điều kiện với đường thẳng 22.
+ Dạng 2.7. Cực trị hàm bậc ba thỏa điều kiện x1, x2 24.
+ Dạng 2.8. Cực trị hàm trùng phương 25.
+ Dạng 2.9. Cực trị hàm hợp y = f(u(x)) 26.
Chủ đề 03. GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT.
+ Dạng 3.1. Max – Min hàm số cho trước đoạn [a;b] 30.
+ Dạng 3.1. Max – Min hàm số cho trước đồ thị hoặc bảng biến thiên 32.
+ Dạng 3.3. Max – min trên khoảng (a;b) 33.
+ Dạng 3.4. Max – min hàm vô tỷ 34.
+ Dạng 3.5. Max – min hàm lượng giác 35.
+ Dạng 3.6. Max – min hàm trị tuyệt đối 36.
Chủ đề 04. TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ.
+ Dạng 4.1. Lý thuyết về đường tiệm cận 39.
+ Dạng 4.2. Tìm đường tiệm cận từ đồ thị hoặc bảng biến thiên 40.
+ Dạng 4.3. Tìm đường tiệm cận của đồ thị hàm số tường minh 41.
+ Dạng 4.4. Biện luận tiệm cận chứa tham số m 43.
+ Dạng 4.5. Tìm đường tiệm cận hàm ẩn 45.
Chủ đề 05. ĐỒ THỊ HÀM SỐ.
+ Dạng 5.1. Từ đồ thị / bảng biến thiên đã cho xác định hàm số 53.
+ Dạng 5.2. Từ đồ thị / bảng biến thiên đã cho xác định các hệ số 54.
+ Dạng 5.3. Đồ thị hàm số chứa trị tuyệt đối 55.
Chủ đề 06. SỰ TƯƠNG GIAO.
+ Dạng 6.1. Đếm số giao điểm (điểm chung) biết hàm tường minh 57.
+ Dạng 6.2. Đếm số giao điểm (điểm chung) biết đồ thị / bảng biến thiên 58.
+ Dạng 6.3. Tìm m để đồ thị hàm số giao với (C’) tại n nghiệm 59.
+ Dạng 6.4. Tìm m để đồ thị hàm số phân thức giao với (C’) thỏa điều kiện 62.
Bài toán tổng hợp lý thuyết ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán tổng hợp lý thuyết ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán tổng hợp lý thuyết ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán tổng hợp lý thuyết ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán tổng hợp lý thuyết ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: tổng hợp lý thuyết ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số.