giaibaitoan.com xin giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 đề thi tuyển sinh vào lớp 10 THPT chuyên năm học 2024 – 2025 của Sở Giáo dục và Đào tạo tỉnh Đồng Nai. Đề thi năm nay được đánh giá là có độ khó cao, phân loại rõ ràng học sinh, đòi hỏi thí sinh phải có kiến thức vững chắc và kỹ năng giải quyết bài toán linh hoạt.
Dưới đây là nội dung chi tiết của đề thi:
Tìm các số nguyên dương x và y thỏa mãn lcm(x, y) + giaibaitoan.com(x, y) = 61. (Với lcm(a, b), gcd(a, b) lần lượt là ký hiệu bội chung nhỏ nhất, ước chung lớn nhất của hai số nguyên dương a và b).
Nhận xét: Đây là một bài toán số học quen thuộc, yêu cầu thí sinh nắm vững các tính chất của bội chung nhỏ nhất và ước chung lớn nhất. Để giải bài toán này, có thể sử dụng các phương pháp như đặt ẩn phụ, xét các trường hợp hoặc sử dụng tính chất gcd(x, y) * lcm(x, y) = x * y.
Chứng minh rằng với mọi cách chọn 7 số bất kỳ trong 12 số nguyên dương đầu tiên, ta luôn tìm được hai số a và b trong 7 số đó sao cho ab + 1 là số chính phương.
Nhận xét: Bài toán này mang tính chất tổ hợp và đòi hỏi thí sinh phải có tư duy logic, khả năng phân tích và sử dụng các kỹ thuật chứng minh sự tồn tại. Một hướng tiếp cận có thể là xét các cặp số và sử dụng tính chất của số chính phương để chứng minh.
Cho tam giác nhọn ABC (với AB < AC) nội tiếp đường tròn (O), có đường cao AD. Tiếp tuyến của đường tròn (O) tại B cắt đường trung trực đoạn thẳng BD tại điểm P. Hai đường thẳng DP và AC cắt nhau tại điểm E. 1) Chứng minh tứ giác ABDE nội tiếp đường tròn. 2) Gọi Q là giao điểm của đường thẳng AP và đường tròn (O), với Q khác A. Chứng minh ∠PDQ = ∠PAD. 3) Gọi K là giao điểm của đường thẳng AD và đường tròn (O), với K khác A. Gọi I là giao điểm của hai đường thẳng CQ và DP. Chứng minh ba điểm B, I, K thẳng hàng.
Nhận xét: Đây là một bài toán hình học phức tạp, đòi hỏi thí sinh phải có kiến thức sâu rộng về các tính chất của đường tròn, tam giác, đường cao, tiếp tuyến và đường trung trực. Để giải bài toán này, cần kết hợp nhiều kỹ năng như chứng minh tứ giác nội tiếp, sử dụng các góc nội tiếp, góc tạo bởi tiếp tuyến và dây cung, và áp dụng các định lý về đường thẳng song song, đường thẳng vuông góc.
Đánh giá chung: Đề thi tuyển sinh lớp 10 THPT chuyên tỉnh Đồng Nai năm 2024 – 2025 là một đề thi chất lượng, có tính phân loại cao. Đề thi không chỉ kiểm tra kiến thức mà còn đánh giá khả năng tư duy, phân tích và giải quyết vấn đề của thí sinh. Đây là một tài liệu tham khảo hữu ích cho các em học sinh đang chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT chuyên.
Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2024 – 2025 sở gd&đt đồng nai là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2024 – 2025 sở gd&đt đồng nai thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2024 – 2025 sở gd&đt đồng nai, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2024 – 2025 sở gd&đt đồng nai, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2024 – 2025 sở gd&đt đồng nai là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: đề tuyển sinh lớp 10 môn toán (chuyên) năm 2024 – 2025 sở gd&đt đồng nai.