Logo Header
  1. Môn Toán
  2. đề thi học sinh giỏi toán 9 năm 2020 – 2021 sở gd&đt hà nam

đề thi học sinh giỏi toán 9 năm 2020 – 2021 sở gd&đt hà nam

giaibaitoan.com xin giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 đề thi học sinh giỏi Toán 9 năm học 2020 – 2021 của Sở Giáo dục và Đào tạo Hà Nam. Đây là một đề thi có độ khó cao, đòi hỏi học sinh phải có kiến thức vững chắc và kỹ năng giải quyết vấn đề tốt. Đề thi bao gồm ba bài toán, tập trung vào các chủ đề quen thuộc nhưng được khai thác ở mức độ sâu sắc, đòi hỏi tư duy sáng tạo và vận dụng linh hoạt các định lý, tính chất hình học và đại số.

Dưới đây là nội dung chi tiết của đề thi:

  1. Bài 1: (Hình học giải tích) Trong mặt phẳng Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = mx + 2 (với m là tham số). Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng 5 (đơn vị diện tích).

    Nhận xét: Đây là một bài toán kết hợp kiến thức về phương trình bậc hai và hình học giải tích. Để giải bài này, học sinh cần tìm được tọa độ giao điểm A, B của (P) và (d) thông qua việc giải phương trình x2 = mx + 2. Sau đó, sử dụng công thức tính diện tích tam giác khi biết tọa độ các đỉnh để thiết lập phương trình và tìm ra giá trị của m thỏa mãn.

  2. Bài 2: (Hình học) Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H, EF cắt (O) tại P và Q (P thuộc cung nhỏ AB).

    a) Chứng minh tam giác APQ cân.

    b) Chứng minh giaibaitoan.com = giaibaitoan.com.

    c) Lấy điểm M đối xứng với điểm P qua AB, điểm N đối xứng với điểm Q qua AC. Chứng minh MN // BC.

    Nhận xét: Bài toán này là một bài toán hình học điển hình, đòi hỏi học sinh nắm vững các tính chất của đường tròn nội tiếp, đường cao, và các tính chất đối xứng. Việc chứng minh tam giác APQ cân có thể dựa trên việc chứng minh các góc bằng nhau. Phần b yêu cầu học sinh vận dụng kiến thức về tứ giác nội tiếp và các hệ thức lượng trong tam giác vuông. Phần c là phần khó nhất, đòi hỏi học sinh phải sử dụng một cách khéo léo các tính chất đối xứng và định lý Thales để chứng minh MN song song với BC.

  3. Bài 3: (Hình học) Cho đường tròn (I) nội tiếp tam giác ABC, (I) tiếp xúc với ba cạnh BC, CA, AB lần lượt tại các điểm D, E, F. Gọi M là trung điểm của BC. Chứng minh các đường thẳng AM, EF, DI đồng quy.

    Nhận xét: Đây là một bài toán về đường tròn nội tiếp và tính đồng quy của các đường thẳng. Để giải bài toán này, học sinh có thể sử dụng định lý Ceva hoặc định lý Menelaus. Việc xác định điểm đồng quy là một thách thức, đòi hỏi học sinh phải có sự quan sát tinh tế và khả năng suy luận logic.

Đánh giá chung: Đề thi học sinh giỏi Toán 9 năm 2020 – 2021 Hà Nam là một đề thi chất lượng, có tính phân loại cao. Đề thi không chỉ kiểm tra kiến thức mà còn đánh giá khả năng tư duy, sáng tạo và vận dụng kiến thức vào giải quyết vấn đề của học sinh. Đây là một tài liệu tham khảo hữu ích cho các em học sinh đang luyện thi học sinh giỏi và các thầy cô giáo trong việc xây dựng kế hoạch giảng dạy.

images-post/de-thi-hoc-sinh-gioi-toan-9-nam-2020-2021-so-gd-dt-ha-nam-1.jpg

File đề thi học sinh giỏi toán 9 năm 2020 – 2021 sở gd&đt hà nam PDF Chi Tiết

Giải bài toán đề thi học sinh giỏi toán 9 năm 2020 – 2021 sở gd&đt hà nam: Phương Pháp, Mẹo Học Hiệu Quả và Ví Dụ Chi Tiết

Bài toán đề thi học sinh giỏi toán 9 năm 2020 – 2021 sở gd&đt hà nam là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.

1. Tầm Quan Trọng Của Việc Giải Bài Toán đề thi học sinh giỏi toán 9 năm 2020 – 2021 sở gd&đt hà nam

Bài toán đề thi học sinh giỏi toán 9 năm 2020 – 2021 sở gd&đt hà nam thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.

  • Rèn luyện tư duy logic: Việc giải các bài toán thuộc dạng này giúp bạn phát triển khả năng tư duy phân tích, nhận biết mối quan hệ giữa các yếu tố trong bài toán.
  • Củng cố kiến thức: Qua quá trình luyện tập, bạn sẽ hiểu sâu hơn về các công thức, định lý, và phương pháp áp dụng.
  • Chuẩn bị cho kỳ thi: Việc làm quen với dạng bài này sẽ giúp bạn tự tin hơn khi bước vào phòng thi.

2. Phương Pháp Giải Bài Toán đề thi học sinh giỏi toán 9 năm 2020 – 2021 sở gd&đt hà nam

Để giải hiệu quả bài toán đề thi học sinh giỏi toán 9 năm 2020 – 2021 sở gd&đt hà nam, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:

Bước 1: Hiểu Đề Bài

  • Đọc kỹ đề bài để nắm bắt yêu cầu chính xác.
  • Xác định các yếu tố đã cho và cần tìm.
  • Phân tích mối liên hệ giữa các yếu tố.

Bước 2: Lựa Chọn Phương Pháp Giải

Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:

  • Phương pháp trực tiếp: Sử dụng các công thức hoặc định lý có sẵn để giải bài.
  • Phương pháp gián tiếp: Biến đổi bài toán về một dạng quen thuộc hoặc dễ xử lý hơn.
  • Sử dụng đồ thị: Trong trường hợp bài toán liên quan đến hàm số hoặc biểu đồ.

Bước 3: Triển Khai Lời Giải

  • Áp dụng công thức và phương pháp đã chọn.
  • Trình bày các bước giải rõ ràng, logic.
  • Kiểm tra lại từng bước để đảm bảo không có sai sót.

Bước 4: Kiểm Tra Kết Quả

  • So sánh kết quả với yêu cầu đề bài.
  • Đánh giá xem lời giải có đáp ứng đầy đủ yêu cầu chưa.

3. Những Mẹo Học Hiệu Quả Khi Giải Bài Toán đề thi học sinh giỏi toán 9 năm 2020 – 2021 sở gd&đt hà nam

Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:

Mẹo 1: Nắm Vững Kiến Thức Cơ Bản

Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.

Mẹo 2: Luyện Tập Thường Xuyên

Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.

Mẹo 3: Phân Tích Sai Lầm

Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.

Mẹo 4: Sử Dụng Tài Liệu Tham Khảo

Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.

4. Ví Dụ Chi Tiết Về Bài Toán đề thi học sinh giỏi toán 9 năm 2020 – 2021 sở gd&đt hà nam

Ví Dụ 1: Đề Bài Cụ Thể

Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”

Lời Giải:

  • 1. Phân tích đề bài: [Chi tiết phân tích các yếu tố]
  • 2. Sử dụng phương pháp: [Phương pháp áp dụng và lý do chọn phương pháp này]
  • 3. Triển khai từng bước:
    • Bước 1: [Mô tả bước đầu tiên]
    • Bước 2: [Mô tả bước tiếp theo]

4. Kết quả cuối cùng: [Đáp án và kiểm tra lại đáp án].

Ví Dụ 2: Bài Tập Nâng Cao

Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:

  • Đề bài: “Chứng minh rằng [nội dung đề bài nâng cao].”
  • Gợi ý lời giải: [Cách tiếp cận và các bước triển khai chi tiết].

5. Tài Liệu Hỗ Trợ Học Tập

Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề thi học sinh giỏi toán 9 năm 2020 – 2021 sở gd&đt hà nam, dưới đây là một số nguồn hữu ích:

  • Sách tham khảo: Các sách chuyên đề về toán học.
  • Website học toán: Những trang web uy tín cung cấp bài tập và lời giải chi tiết.
  • Video bài giảng: Các kênh YouTube hoặc khóa học trực tuyến giúp bạn hiểu sâu hơn về phương pháp giải.

6. Lời Khuyên Từ Chuyên Gia

Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.

7. Kết Luận

Bài toán đề thi học sinh giỏi toán 9 năm 2020 – 2021 sở gd&đt hà nam là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.

Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!

>> Xem thêm đáp án chi tiết về: đề thi học sinh giỏi toán 9 năm 2020 – 2021 sở gd&đt hà nam.

Icon Shopee