Tài liệu gồm 24 trang với các nội dung gồm tóm tắt lý thuyết cực trị hàm số, các dạng bài tập và bài tập vận dụng.
A. Lý thuyết về cực trị của hàm số
Ở phần này ta sẽ xác định điểm nằm giữa khoảng đồng biến, nghịch biến của hàm số, và ngược lại. Những điểm này được gọi là điểm cực trị của đồ thị hàm số. Điểm cực trị bao gồm cả điểm cực đại và điểm cực tiểu của đồ thị hàm số
1. Định nghĩa và các lưu ý
2. Điều kiện đủ để hàm số có cực trị
3. Quy tắc để tìm cực trị
B. Các dạng toán liên quan đến cực trị
Dạng 1: Xác định điểm cực trị của hàm số, điểm cực trị của đồ thị hàm số, tìm giá trị cực trị của hàm số
Đây là dạng toán cơ bản nhất về cực trị, tuy nhiên xuất hiện rất nhiều trong các đề thi thử. Ở dạng toán này ta chỉ áp dụng các tính chất đã được nêu ở phần A
Dạng 2: Tìm điều kiện để hàm số có cực trị
1. Đối với hàm số bậc 3
2. Đối với hàm bậc bốn trùng phương dạng
[ads]
Dạng 3: Tìm điều kiện để hàm số đã cho có điểm cực trị thỏa mãn điều kiện cho trước
Xét hàm số bậc bốn trùng phương có dạng y = x^4 + bx^2 + c (a ≠ 0)
+ Bài toán 1: Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x^4 + bx^2 + c (a ≠ 0) có ba điểm cực trị tạo thành tam giác vuông
+ Bài toán 2: Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x^4 + bx^2 + c (a ≠ 0) có ba điểm cực trị tạo thành tam giác đều
+ Bài toán 3: Tìm tất cả các giá trị của tham số m để đồ thị hàm số các giá trị thực của tham số m để đồ thị hàm số y = x^4 + bx^2 + c (a ≠ 0) có ba điểm cực trị tạo thành tam giác có diện tích bằng S
+ Bài toán 4: Tìm tất cả các giá trị của tham số m để đồ thị hàm số các giá trị thực của tham số m để đồ thị hàm số y = x^4 + bx^2 + c (a ≠ 0) có ba điểm cực trị tạo thành tam giác có diện tích lớn nhất
+ Bài toán 5: Tìm tất cả các giá trị của tham số m để đồ thị hàm số các giá trị thực của tham số m để đồ thị hàm số y = x^4 + bx^2 + c (a ≠ 0) có ba điểm cực trị tạo thành tam giác có góc ở đỉnh cân bằng α
+ Bài toán 6: Tìm tất cả các giá trị của tham số m để đồ thị hàm số các giá trị thực của tham số m để đồ thị hàm số y = x^4 + bx^2 + c (a ≠ 0) có ba điểm cực trị tạo thành tam giác có ba góc nhọn
+ Bài toán 7: Tìm tất cả các giá trị của tham số m để đồ thị hàm số các giá trị thực của tham số m để đồ thị hàm số y = x^4 + bx^2 + c (a ≠ 0) có ba điểm cực trị tạo thành tam giác có bán kính đường tròn nội tiếp là r
+ Bài toán 8: Tìm tất cả các giá trị của tham số m để đồ thị hàm số các giá trị thực của tham số m để đồ thị hàm số y = x^4 + bx^2 + c (a ≠ 0) có ba điểm cực trị tạo thành tam giác có bán kính đường tròn ngoại tiếp là R
+ Bài toán 9: Tìm tất cả các giá trị của tham số m để đồ thị hàm số các giá trị thực của tham số m để đồ thị hàm số y = x^4 + bx^2 + c (a ≠ 0) có ba điểm cực trị tạo thành tam giác có:
a. Có độ dài BC = m0
b. Có AB = AC = n0
+ Bài toán 10: Tìm tất cả các giá trị của tham số m để đồ thị hàm số các giá trị thực của tham số m để đồ thị hàm số y = x^4 + bx^2 + c (a ≠ 0) có ba điểm cực trị tạo thành tam giác:
a. Nhận gốc tọa độ O là trọng tâm
b. Nhận gốc tọa độ O làm trực tâm
c. Nhận gốc tọa độ O làm tâm đường tròn ngoại tiếp
+ Bài toán 11: Tìm tất cả các giá trị của tham số m để đồ thị hàm số các giá trị thực của tham số m để đồ thị hàm số y = x^4 + bx^2 + c (a ≠ 0) có ba điểm cực trị tạo thành tam giác sao cho trục hoành chia tam giác ABC thành hai phần có diện tích bằng nhau
Xét hàm số bậc ba có dạng y = ax^3 + bx^2 + cx + d (a ≠ 0)
+ Bài toán 1: Viết phương trình đi qua hai điểm cực đại, cực tiểu của đồ thị hàm số y = ax^3 + bx^2 + cx + d (a ≠ 0)
+ Bài toán 2: Viết phương trình đi qua hai điểm cực đại, cực tiểu của đồ thị hàm số y = ax^3 + bx^2 + cx + d (a ≠ 0)
C. Bài tập rèn luyện kỹ năng
Bài toán các dạng toán liên quan đến cực trị của hàm số – vũ ngọc huyền là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán các dạng toán liên quan đến cực trị của hàm số – vũ ngọc huyền thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán các dạng toán liên quan đến cực trị của hàm số – vũ ngọc huyền, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán các dạng toán liên quan đến cực trị của hàm số – vũ ngọc huyền, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán các dạng toán liên quan đến cực trị của hàm số – vũ ngọc huyền là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: các dạng toán liên quan đến cực trị của hàm số – vũ ngọc huyền.