Tài liệu gồm 420 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng và tuyển chọn các bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit (Toán 12 phần Giải tích chương 2).
CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT 1.
1. LŨY THỪA.
A. Lý thuyết 1.
B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 4.
Dạng 1. Biến đổi biểu thức liên quan và so sánh 2.
Dạng 2. Rút gọn biểu thức 10.
C. Câu hỏi trắc nghiệm 17.
Dạng 1. Lũy thừa với số mũ hữu tỉ 18.
Dạng 2. Lũy thừa với số mũ vô tỉ 26.
2. HÀM SỐ LŨY THỪA.
A. Lý thuyết 31.
B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 32.
Dạng 1. Tập xác định của hàm số lũy thừa 32.
Dạng 2. Tính đạo hàm, tìm giá trị lớn nhất và giá trị nhỏ nhất 35.
+ Loại 1. Tính đạo hàm của hàm số lũy thừa 35.
+ Loại 2. Tính giá trị lớn nhất và giá trị lớn nhất của hàm số lũy thừa 36.
Dạng 3. Tính chất đồ thị của hàm số lũy thừa 41.
C. Câu hỏi trắc nghiệm trong các đề thi đại học 46.
3. LÔGARIT.
A. Lý thuyết 57.
B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 58.
Dạng 1. Tập xác định của hàm số lôgarit 58.
Dạng 2. Rút gọn biểu thức 66.
Dạng 3. Tính giá trị của biểu thức, chứng minh đẳng thức 71.
Dạng 4. Khái niệm, tính chất và so sánh 81.
Dạng 5. Biểu diễn một lôgarit theo một lôgarit khác cơ số cho trước 90.
4. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT.
A. Lý thuyết 102.
B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 103.
Dạng 1. Tập xác định của hàm số lôgarit 103.
Dạng 2. Tính giá trị của biểu thức khi biết một điều kiện 115.
Dạng 3. Tính đạo hàm, tìm giá trị lớn nhất và giá trị nhỏ nhất 118.
Dạng 4. Sự đồng biến và nghịch biến của hàm số mũ và hàm số lôgarit 157.
Dạng 5. Tìm cực trị của hàm số mũ và hàm số lôgarit 168.
Dạng 6. Tính chất và đồ thị của hàm số mũ và hàm số lôgarit 170.
Dạng 7. Bài toán thực tế, lãi suất 184.
+ Loại 1. Bài toán lãi kép 184.
+ Loại 2. Bài toán gửi tiết kiệm hàng tháng 192.
+ Loại 3. Bài toán trả góp hàng tháng 195.
+ Loại 4. Bài toán tăng trưởng 198.
5. PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LÔGARIT.
I. PHƯƠNG TRÌNH MŨ.
A. Lý thuyết 203.
B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 203.
Dạng 1. Phương trình Mũ cơ bản và phương pháp đưa về cùng cơ số 203.
Dạng 2. Phương pháp đặt ẩn phụ 211.
Dạng 3. Phương pháp Lôgarit hóa 222.
Dạng 4. Phương pháp tích 229.
Dạng 5. Phương pháp đặt ẩn phụ không hoàn toàn, phương pháp đồ thị 232.
Dạng 6. Phương pháp sử dụng tính đơn điệu của hàm số 235.
Dạng 7. Phương trình chứa tham số m 235.
+ Loại 1. Tìm điều kiện của m để phương trình có nghiệm 241.
+ Loại 2. Tìm điều kiện của m để phương trình có n nghiệm trên [a;b] 246.
+ Loại 3. Tìm điều kiện của m để phương trình có nghiệm thỏa mãn điều kiện 253.
II. PHƯƠNG TRÌNH LÔGARIT.
A. Lý thuyết 263.
B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 263.
Dạng 1. Phương trình Lôgarit cơ bản và phương pháp đưa về cùng cơ số 263.
Dạng 2. Phương pháp đặt ẩn phụ 289.
Dạng 3. Phương pháp mũ hóa Lôgarit 304.
Dạng 4. Phương pháp tích 311.
Dạng 5. Phương pháp đồ thị và hàm đặt trưng 315.
Dạng 6. Phương trình chứa tham số m 321.
6. BẤT PHƯƠNG TRÌNH MŨ VÀ BẤT PHƯƠNG TRÌNH LÔGARIT.
I. BẤT PHƯƠNG TRÌNH MŨ.
A. Lý thuyết 344.
B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 344.
Dạng 1. Bất phương trình Mũ cơ bản và phương pháp đưa về cùng cơ số 344.
Dạng 2. Phương pháp đặt ẩn phụ 356.
Dạng 3. Phương pháp Lôgarit hóa và bất phương trình tích 365.
Dạng 4. Phương pháp sử dụng tính đơn điệu của hàm số 368.
Dạng 5. Bất phương trình chứa tham số m 370.
II. BẤT PHƯƠNG TRÌNH LÔGARIT.
A. Lý thuyết 382.
B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 382.
Dạng 1. Bất phương trình Lôgarit cơ bản và phương pháp đưa về cùng cơ số 382.
Dạng 2. Phương pháp đặt ẩn phụ 406.
Dạng 3. Phương pháp biến đổi về phương trình tích 414.
Bài toán bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit – diệp tuân là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit – diệp tuân thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit – diệp tuân, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit – diệp tuân, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit – diệp tuân là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit – diệp tuân.