Tài liệu gồm 776 trang, được biên soạn bởi thầy giáo Trần Đình Cư, bao gồm kiến thức cần nắm, giải bài tập sách giáo khoa, phương pháp giải các dạng toán và bài tập chuyên đề ứng dụng đạo hàm để khảo sát hàm số môn Toán 12 bộ sách Chân Trời Sáng Tạo (CTST).
BÀI 1. TÍNH ĐƠN ĐIỆU VÀ CỰC TRỊ CỦA HÀM SỐ.
+ Dạng 1. Xét tính đơn điệu của hàm số cho bởi công thức.
+ Dạng 2. Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị.
+ Dạng 3. Tìm tham số m để hàm số đơn điệu.
+ Dạng 4. Ứng dụng tính đơn điệu để chứng minh bất đẳng thức, giải phương trình, bất phương trình, hệ bất phương trình.
+ Dạng 5. Tìm cực trị hàm số cho bởi công thức.
+ Dạng 6. Tìm cực trị dựa vào bảng biến thiên, đồ thị.
+ Dạng 7. Tìm m để hàm số đạt cực trị tại một điểm x0 cho trước.
+ Dạng 8. Toán thực tế.
BÀI 2. GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ.
+ Dạng 1. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số khi biết đồ thị hoặc bảng biến thiên.
+ Dạng 2. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên đoạn.
+ Dạng 3. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên khoảng.
+ Dạng 4. Bài toán tối ưu có yếu tố thực tế.
+ Dạng 5. Giá trị lớn nhất, giá trị nhỏ nhất của hàm nhiều biến.
BÀI 3. ĐƯỜNG TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ.
+ Dạng 1. Tiệm cận của đồ thị hàm số phân thức hữu tỉ.
+ Dạng 2. Tiệm cận hàm vô tỉ.
+ Dạng 3. Một số bài toán tiệm cận có chứa tham số m.
+ Dạng 4. Dựa vào đồ thị và bảng biến thiên xác định các đường tiệm cận.
BÀI 4. KHẢO SÁT VÀ VẼ ĐỒ THỊ MỘT SỐ HÀM SỐ CƠ BẢN.
+ Dạng 1. Hàm số bậc ba và một số bài toán liên quan.
+ Dạng 2. Hàm số nhất biến và các bài toán liên quan.
+ Dạng 3. Hàm số hữu tỉ bậc hai trên bậc nhất và một số bài toán liên quan.
+ Dạng 4. Toán thực tế.
Bài toán bài giảng ứng dụng đạo hàm để khảo sát hàm số toán 12 ctst là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán bài giảng ứng dụng đạo hàm để khảo sát hàm số toán 12 ctst thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán bài giảng ứng dụng đạo hàm để khảo sát hàm số toán 12 ctst, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán bài giảng ứng dụng đạo hàm để khảo sát hàm số toán 12 ctst, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán bài giảng ứng dụng đạo hàm để khảo sát hàm số toán 12 ctst là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: bài giảng ứng dụng đạo hàm để khảo sát hàm số toán 12 ctst.