giaibaitoan.com xin giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 đề thi tuyển sinh lớp 10 môn Toán (vòng 2) năm 2022 của trường THPT chuyên KHTN, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội. Đề thi này được đánh giá là có độ khó cao, đòi hỏi học sinh phải có kiến thức vững chắc và kỹ năng giải quyết vấn đề tốt. Điểm đặc biệt của tài liệu này là đi kèm với đáp án và lời giải chi tiết, được biên soạn bởi đội ngũ chuyên gia của CLB Toán Lim, bao gồm các thành viên: Nguyễn Duy Khương, Nguyễn Hoàng Việt, Trịnh Đình Triển, Trương Mạnh Tuấn, TQĐ, Nguyễn Văn Hoàng và Nguyễn Khang.
Dưới đây là nội dung trích dẫn đề thi:
Cho các điểm A1, A2, …, A30 theo thứ tự nằm trên một đường thẳng sao cho độ dài các đoạn AkAk+1 bằng k (đơn vị dài), với k = 1, 2, …, 29. Ta tô màu mỗi đoạn thẳng A1A2, …, A29A30 bởi 1 trong 3 màu (mỗi đoạn được tô bởi đúng một màu). Chứng minh rằng với mọi cách tô màu, ta luôn chọn được hai số nguyên dương 1 ≤ j < i ≤ 29 sao cho hai đoạn AiAi+1 và AjAj+1 được tô cùng màu và i − j là bình phương của số nguyên dương.
Nhận xét: Đây là một bài toán tổ hợp khá thú vị, đòi hỏi học sinh phải vận dụng linh hoạt các kiến thức về dãy số, tính chất chia hết và nguyên lý Dirichlet. Lời giải thường dựa trên việc xét các trường hợp và sử dụng tính chất của bình phương số nguyên để chứng minh.
Cho tam giác ABC nhọn nội tiếp đường tròn (O), P thay đổi nằm trong tam giác sao cho E, F là hình chiếu của P lên CA, AB thì BFEC nội tiếp đường tròn (K). 1) Chứng minh rằng: AP ⊥ BC. 2) Chứng minh rằng: AP = 2OK. 3) Đường thẳng qua P vuông góc AP cắt (O) tại Q, R. Chứng minh rằng: (A; AP) tiếp xúc (KQR).
Nhận xét: Bài toán này thuộc dạng hình học phẳng nâng cao, kết hợp nhiều kiến thức về đường tròn nội tiếp, đường tròn ngoại tiếp, tính chất đối xứng và quan hệ vuông góc. Để giải quyết bài toán này, học sinh cần có khả năng vẽ hình chính xác, phân tích các mối quan hệ hình học và sử dụng các định lý liên quan.
Với a, b, c là những số thực dương thỏa mãn điều kiện 1/a + 1/b + 1/c = 1. Chứng minh rằng?
Nhận xét: Bài toán này là một bài toán bất đẳng thức quen thuộc, thường xuất hiện trong các kỳ thi tuyển sinh vào lớp 10. Để giải quyết bài toán này, học sinh có thể sử dụng các bất đẳng thức cơ bản như Cauchy-Schwarz, AM-GM hoặc phương pháp đánh giá trực tiếp.
Việc có được đề thi chính thức cùng với lời giải chi tiết từ CLB Toán Lim là một nguồn tài liệu vô cùng quý giá cho các em học sinh đang chuẩn bị cho kỳ thi tuyển sinh vào lớp 10. Hy vọng rằng tài liệu này sẽ giúp các em củng cố kiến thức, rèn luyện kỹ năng và đạt được kết quả tốt nhất trong kỳ thi sắp tới.
Bài toán đề tuyển sinh lớp 10 môn toán (vòng 2) năm 2022 trường thpt chuyên khtn – hà nội là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán đề tuyển sinh lớp 10 môn toán (vòng 2) năm 2022 trường thpt chuyên khtn – hà nội thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán đề tuyển sinh lớp 10 môn toán (vòng 2) năm 2022 trường thpt chuyên khtn – hà nội, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề tuyển sinh lớp 10 môn toán (vòng 2) năm 2022 trường thpt chuyên khtn – hà nội, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán đề tuyển sinh lớp 10 môn toán (vòng 2) năm 2022 trường thpt chuyên khtn – hà nội là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: đề tuyển sinh lớp 10 môn toán (vòng 2) năm 2022 trường thpt chuyên khtn – hà nội.