Logo Header
  1. Môn Toán
  2. đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt long an

đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt long an

giaibaitoan.com xin giới thiệu đến quý thầy cô giáo và các em học sinh đề thi tuyển sinh lớp 10 THPT chuyên năm học 2023 – 2024 của Sở Giáo dục và Đào tạo tỉnh Long An, được tổ chức vào ngày 08/06/2023. Đề thi năm nay được đánh giá là có độ khó phù hợp, phân loại rõ ràng học sinh, đồng thời kiểm tra kiến thức và kỹ năng giải quyết vấn đề một cách toàn diện.

Dưới đây là nội dung chi tiết của đề thi:

  1. Bài toán 1: Ứng dụng thực tế – Giải bài toán bằng hệ phương trình

    Bài toán liên quan đến chương trình giảm giá của một cửa hàng, yêu cầu học sinh thiết lập và giải hệ phương trình bậc nhất hai ẩn để tìm ra giá niêm yết của hai mặt hàng X và Y. Đây là một dạng bài toán quen thuộc, thường xuất hiện trong các kỳ thi tuyển sinh, giúp đánh giá khả năng vận dụng toán học vào thực tiễn.

    Trích dẫn: Nhân dịp kỉ niệm 10 năm thành lập, cửa hàng GNH có thực hiện chương trình giảm giá cho mặt hàng X là 20% và mặt hàng Y là 15% so với giá niêm yết. Bà Giới mua 2 món hàng X và 1 món hàng Y phải trả số tiền là 395000 đồng. Ngày cuối cùng của chương trình, cửa hàng thay đổi bằng cách giảm giá mặt hàng X là 30% và mặt hàng Y là 25%. Vào ngày hôm đó, cô Định mua 3 món hàng X và 2 món hàng Y thì trả số tiền là 603000 đồng. Tính giá niêm yết của mỗi món hàng X và Y (giá niêm yết là giá ghi trên món hàng nhưng chưa thực hiện giảm giá).

    Nhận xét: Bài toán này đòi hỏi học sinh phải đọc kỹ đề, xác định đúng các đại lượng và mối quan hệ giữa chúng để xây dựng hệ phương trình chính xác. Việc giải hệ phương trình cũng cần sự cẩn thận để tránh sai sót.

  2. Bài toán 2: Hình học – Quan hệ vuông góc, tiếp tuyến và nội tiếp đường tròn

    Bài toán này tập trung vào kiến thức về đường tròn, tiếp tuyến, quan hệ vuông góc và tính chất của tứ giác nội tiếp. Học sinh cần sử dụng các định lý và tính chất hình học cơ bản để chứng minh các mối quan hệ và tính toán diện tích.

    Trích dẫn: Cho nửa đường tròn tâm O có đường kính AB = 2R. Từ A và B lần lượt kẻ hai tiếp tuyến Au, Bv với nửa đường tròn. Qua một điểm C thuộc nửa đường tròn (C khác A và B), kẻ tiếp tuyến với nửa đường tròn, nó cắt Au và Bv theo thứ tự ở M và N. a) Chứng minh tứ giác AMCO nội tiếp đường tròn và CBO = CNO. b) Kẻ CH vuông góc với AB tại H, gọi K là giao điểm của CH với AN. Chứng minh ba điểm M, K, B thẳng hàng. c) Gọi S là diện tích của tam giác ABC, S1 là diện tích của tam giác MON. Hãy tính tỉ số S1/S khi AM = 1,5R.

    Nhận xét: Đây là một bài toán hình học điển hình, đòi hỏi học sinh có khả năng tư duy không gian, vẽ hình chính xác và vận dụng linh hoạt các kiến thức đã học. Phần c) của bài toán yêu cầu học sinh kết hợp kiến thức về diện tích tam giác và tỉ lệ để tính toán, thể hiện sự hiểu biết sâu sắc về hình học.

  3. Bài toán 3: Tổ hợp – Đếm số phần tử của tập hợp

    Bài toán này thuộc về lĩnh vực tổ hợp, yêu cầu học sinh tìm số lượng mật mã có thể có dựa trên các điều kiện cho trước. Đây là một dạng bài toán thường gặp trong các kỳ thi, giúp đánh giá khả năng tư duy logic và kỹ năng đếm.

    Trích dẫn: Ông Tuệ khóa két sắt bằng mật mã có 4 chữ số. Ông chỉ nhớ rằng trong 4 chữ số đó không có chữ số 0 và tổng của chúng bằng 9. Hỏi ông Tuệ phải thử tối đa bao nhiêu lần mật mã khác nhau để chắc chắn mở được két sắt đó?

    Nhận xét: Bài toán này đòi hỏi học sinh phải hiểu rõ về các quy tắc đếm cơ bản và áp dụng chúng một cách linh hoạt. Việc tìm ra tất cả các bộ số thỏa mãn điều kiện là một thách thức, đòi hỏi sự kiên nhẫn và cẩn thận.

Đánh giá chung: Đề thi tuyển sinh lớp 10 THPT chuyên tỉnh Long An năm 2023 – 2024 có cấu trúc rõ ràng, bao gồm các bài toán thuộc nhiều lĩnh vực khác nhau của toán học. Đề thi có độ khó vừa phải, phù hợp với trình độ của học sinh chuyên toán. Các bài toán đòi hỏi học sinh phải có kiến thức vững chắc, kỹ năng giải quyết vấn đề tốt và khả năng vận dụng toán học vào thực tiễn.

images-post/de-tuyen-sinh-lop-10-mon-toan-chuyen-nam-2023-2024-so-gd-dt-long-an-1.jpg

File đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt long an PDF Chi Tiết

Giải bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt long an: Phương Pháp, Mẹo Học Hiệu Quả và Ví Dụ Chi Tiết

Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt long an là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.

1. Tầm Quan Trọng Của Việc Giải Bài Toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt long an

Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt long an thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.

  • Rèn luyện tư duy logic: Việc giải các bài toán thuộc dạng này giúp bạn phát triển khả năng tư duy phân tích, nhận biết mối quan hệ giữa các yếu tố trong bài toán.
  • Củng cố kiến thức: Qua quá trình luyện tập, bạn sẽ hiểu sâu hơn về các công thức, định lý, và phương pháp áp dụng.
  • Chuẩn bị cho kỳ thi: Việc làm quen với dạng bài này sẽ giúp bạn tự tin hơn khi bước vào phòng thi.

2. Phương Pháp Giải Bài Toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt long an

Để giải hiệu quả bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt long an, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:

Bước 1: Hiểu Đề Bài

  • Đọc kỹ đề bài để nắm bắt yêu cầu chính xác.
  • Xác định các yếu tố đã cho và cần tìm.
  • Phân tích mối liên hệ giữa các yếu tố.

Bước 2: Lựa Chọn Phương Pháp Giải

Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:

  • Phương pháp trực tiếp: Sử dụng các công thức hoặc định lý có sẵn để giải bài.
  • Phương pháp gián tiếp: Biến đổi bài toán về một dạng quen thuộc hoặc dễ xử lý hơn.
  • Sử dụng đồ thị: Trong trường hợp bài toán liên quan đến hàm số hoặc biểu đồ.

Bước 3: Triển Khai Lời Giải

  • Áp dụng công thức và phương pháp đã chọn.
  • Trình bày các bước giải rõ ràng, logic.
  • Kiểm tra lại từng bước để đảm bảo không có sai sót.

Bước 4: Kiểm Tra Kết Quả

  • So sánh kết quả với yêu cầu đề bài.
  • Đánh giá xem lời giải có đáp ứng đầy đủ yêu cầu chưa.

3. Những Mẹo Học Hiệu Quả Khi Giải Bài Toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt long an

Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:

Mẹo 1: Nắm Vững Kiến Thức Cơ Bản

Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.

Mẹo 2: Luyện Tập Thường Xuyên

Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.

Mẹo 3: Phân Tích Sai Lầm

Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.

Mẹo 4: Sử Dụng Tài Liệu Tham Khảo

Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.

4. Ví Dụ Chi Tiết Về Bài Toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt long an

Ví Dụ 1: Đề Bài Cụ Thể

Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”

Lời Giải:

  • 1. Phân tích đề bài: [Chi tiết phân tích các yếu tố]
  • 2. Sử dụng phương pháp: [Phương pháp áp dụng và lý do chọn phương pháp này]
  • 3. Triển khai từng bước:
    • Bước 1: [Mô tả bước đầu tiên]
    • Bước 2: [Mô tả bước tiếp theo]

4. Kết quả cuối cùng: [Đáp án và kiểm tra lại đáp án].

Ví Dụ 2: Bài Tập Nâng Cao

Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:

  • Đề bài: “Chứng minh rằng [nội dung đề bài nâng cao].”
  • Gợi ý lời giải: [Cách tiếp cận và các bước triển khai chi tiết].

5. Tài Liệu Hỗ Trợ Học Tập

Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt long an, dưới đây là một số nguồn hữu ích:

  • Sách tham khảo: Các sách chuyên đề về toán học.
  • Website học toán: Những trang web uy tín cung cấp bài tập và lời giải chi tiết.
  • Video bài giảng: Các kênh YouTube hoặc khóa học trực tuyến giúp bạn hiểu sâu hơn về phương pháp giải.

6. Lời Khuyên Từ Chuyên Gia

Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.

7. Kết Luận

Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt long an là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.

Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!

>> Xem thêm đáp án chi tiết về: đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt long an.

Icon Shopee