Logo Header
  1. Môn Toán
  2. đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt phú yên

đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt phú yên

giaibaitoan.com xin giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 đề thi tuyển sinh vào lớp 10 THPT chuyên năm học 2022 – 2023 của Sở Giáo dục và Đào tạo tỉnh Phú Yên. Đề thi này là một tài liệu tham khảo quý giá cho quá trình ôn luyện, giúp học sinh làm quen với cấu trúc đề thi chuyên và rèn luyện kỹ năng giải quyết các bài toán khó.

Dưới đây là nội dung chi tiết các câu hỏi trong đề thi:

  1. Câu 1: Tìm m để phương trình x2 – (m + 1)x + m + 3 = 0 (m là tham số) có hai nghiệm x1 và x2 là độ dài hai cạnh AB, AC của tam giác ABC vuông tại A và có BC = 5.

    Nhận xét: Đây là một bài toán kết hợp kiến thức về phương trình bậc hai và tam giác vuông. Để giải quyết bài toán này, học sinh cần nắm vững các công thức liên quan đến nghiệm của phương trình bậc hai (định lý Viète), định lý Pytago và điều kiện để một tam giác là tam giác vuông. Bài toán đòi hỏi sự kết hợp linh hoạt các kiến thức và kỹ năng để tìm ra giá trị của m thỏa mãn.

  2. Câu 2: Cho ba đường thẳng cố định a, b, c song song nhau sao cho b nằm giữa và cách đều a và c. Một đường thẳng d cố định, vuông góc với a, lần lượt cắt a, b, c tại A, B, C. Trên đoạn AB lấy điểm I sao cho IA = 2IB. Gọi D là một điểm di động trên c. Trên b lấy điểm E sao cho IE = 1/giaibaitoan.com. Đường thẳng DE cắt a tại F.
    • a) Lấy điểm H trên đoạn ED sao cho HE = 1/giaibaitoan.com. Chứng minh rằng FIH = 90°.
    • b) Chứng minh rằng đường thẳng DE luôn tiếp xúc với một đường tròn cố định.

    Nhận xét: Đây là một bài toán hình học phức tạp, đòi hỏi học sinh có khả năng quan sát tốt, vận dụng linh hoạt các định lý và tính chất về đường thẳng song song, đường thẳng vuông góc, và các hệ thức lượng trong tam giác. Phần a yêu cầu chứng minh góc, thường sử dụng các tam giác đồng dạng hoặc các tính chất về trung điểm. Phần b, việc chứng minh đường thẳng DE tiếp xúc với một đường tròn cố định thường liên quan đến việc tìm tâm và bán kính của đường tròn đó, và chứng minh khoảng cách từ tâm đến đường thẳng DE bằng bán kính.

  3. Câu 3: Cho các số nguyên dương x, y, z thỏa (x + y)4 + 5z = 63x. Tính giá trị biểu thức: Q = x + y + z.

    Nhận xét: Đây là một bài toán số học, đòi hỏi học sinh có khả năng phân tích, biến đổi và sử dụng các tính chất của số nguyên dương. Bài toán có thể được giải bằng phương pháp đánh giá hoặc phương pháp xét các trường hợp. Việc tìm ra các giá trị của x, y, z thỏa mãn phương trình là bước quan trọng để tính giá trị của biểu thức Q.

Đánh giá chung: Đề thi tuyển sinh lớp 10 chuyên tỉnh Phú Yên năm 2022 – 2023 có độ khó tương đối cao, đòi hỏi học sinh phải có kiến thức vững chắc, kỹ năng giải toán tốt và khả năng tư duy logic. Các câu hỏi trong đề thi đều mang tính ứng dụng cao, giúp đánh giá toàn diện năng lực của học sinh. Đây là một đề thi tốt để học sinh rèn luyện và chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 chuyên.

images-post/de-tuyen-sinh-lop-10-mon-toan-chuyen-nam-2022-2023-so-gd-dt-phu-yen-1.jpg

File đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt phú yên PDF Chi Tiết

Giải bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt phú yên: Phương Pháp, Mẹo Học Hiệu Quả và Ví Dụ Chi Tiết

Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt phú yên là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.

1. Tầm Quan Trọng Của Việc Giải Bài Toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt phú yên

Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt phú yên thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.

  • Rèn luyện tư duy logic: Việc giải các bài toán thuộc dạng này giúp bạn phát triển khả năng tư duy phân tích, nhận biết mối quan hệ giữa các yếu tố trong bài toán.
  • Củng cố kiến thức: Qua quá trình luyện tập, bạn sẽ hiểu sâu hơn về các công thức, định lý, và phương pháp áp dụng.
  • Chuẩn bị cho kỳ thi: Việc làm quen với dạng bài này sẽ giúp bạn tự tin hơn khi bước vào phòng thi.

2. Phương Pháp Giải Bài Toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt phú yên

Để giải hiệu quả bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt phú yên, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:

Bước 1: Hiểu Đề Bài

  • Đọc kỹ đề bài để nắm bắt yêu cầu chính xác.
  • Xác định các yếu tố đã cho và cần tìm.
  • Phân tích mối liên hệ giữa các yếu tố.

Bước 2: Lựa Chọn Phương Pháp Giải

Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:

  • Phương pháp trực tiếp: Sử dụng các công thức hoặc định lý có sẵn để giải bài.
  • Phương pháp gián tiếp: Biến đổi bài toán về một dạng quen thuộc hoặc dễ xử lý hơn.
  • Sử dụng đồ thị: Trong trường hợp bài toán liên quan đến hàm số hoặc biểu đồ.

Bước 3: Triển Khai Lời Giải

  • Áp dụng công thức và phương pháp đã chọn.
  • Trình bày các bước giải rõ ràng, logic.
  • Kiểm tra lại từng bước để đảm bảo không có sai sót.

Bước 4: Kiểm Tra Kết Quả

  • So sánh kết quả với yêu cầu đề bài.
  • Đánh giá xem lời giải có đáp ứng đầy đủ yêu cầu chưa.

3. Những Mẹo Học Hiệu Quả Khi Giải Bài Toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt phú yên

Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:

Mẹo 1: Nắm Vững Kiến Thức Cơ Bản

Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.

Mẹo 2: Luyện Tập Thường Xuyên

Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.

Mẹo 3: Phân Tích Sai Lầm

Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.

Mẹo 4: Sử Dụng Tài Liệu Tham Khảo

Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.

4. Ví Dụ Chi Tiết Về Bài Toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt phú yên

Ví Dụ 1: Đề Bài Cụ Thể

Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”

Lời Giải:

  • 1. Phân tích đề bài: [Chi tiết phân tích các yếu tố]
  • 2. Sử dụng phương pháp: [Phương pháp áp dụng và lý do chọn phương pháp này]
  • 3. Triển khai từng bước:
    • Bước 1: [Mô tả bước đầu tiên]
    • Bước 2: [Mô tả bước tiếp theo]

4. Kết quả cuối cùng: [Đáp án và kiểm tra lại đáp án].

Ví Dụ 2: Bài Tập Nâng Cao

Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:

  • Đề bài: “Chứng minh rằng [nội dung đề bài nâng cao].”
  • Gợi ý lời giải: [Cách tiếp cận và các bước triển khai chi tiết].

5. Tài Liệu Hỗ Trợ Học Tập

Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt phú yên, dưới đây là một số nguồn hữu ích:

  • Sách tham khảo: Các sách chuyên đề về toán học.
  • Website học toán: Những trang web uy tín cung cấp bài tập và lời giải chi tiết.
  • Video bài giảng: Các kênh YouTube hoặc khóa học trực tuyến giúp bạn hiểu sâu hơn về phương pháp giải.

6. Lời Khuyên Từ Chuyên Gia

Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.

7. Kết Luận

Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt phú yên là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.

Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!

>> Xem thêm đáp án chi tiết về: đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt phú yên.

Icon Shopee