giaibaitoan.com xin giới thiệu đến quý thầy cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên Toán năm học 2021 – 2022 của Sở Giáo dục và Đào tạo Cần Thơ. Đề thi được thực hiện ngày 05 tháng 06 năm 2021, đi kèm với đáp án và lời giải chi tiết, nhằm hỗ trợ công tác ôn tập và chuẩn bị cho kỳ thi sắp tới.
Đề thi năm nay được đánh giá là có độ khó tương đối cao, đòi hỏi học sinh phải có kiến thức vững chắc và kỹ năng giải quyết bài toán tốt. Các câu hỏi không chỉ kiểm tra kiến thức cơ bản mà còn đánh giá khả năng vận dụng linh hoạt và sáng tạo của thí sinh. Dưới đây là nội dung chi tiết của đề thi:
Cho parabol (P): y = x2 và đường thẳng (d): y = –2mx – 2m. Tìm tất cả giá trị của tham số m sao cho (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 và x2 thỏa mãn |x1| + |x2| = 2√3.
Nhận xét: Đây là một bài toán điển hình về phương trình hoành độ giao điểm và điều kiện có nghiệm của phương trình bậc hai. Điểm đặc biệt của bài toán nằm ở điều kiện liên quan đến giá trị tuyệt đối của hoành độ giao điểm, đòi hỏi thí sinh phải xét các trường hợp khác nhau để giải quyết.
Lúc 7 giờ, anh Toàn điều khiển một xe gắn máy khởi hành từ thành phố A đến thành phố B. Khi đi được quãng đường, xe bị hỏng nên anh Toàn dừng lại để sửa chữa. Sau 30 phút sửa xe, anh Toàn tiếp tục điều khiển xe gắn máy đó đi đến thành phố B với vận tốc nhỏ hơn vận tốc ban đầu 10 km/h. Lúc 10 giờ 54 phút, anh Toàn đến thành phố B. Biết rằng quãng đường từ thành phố A đến thành phố B là 160 km và vận tốc của xe trên mỗi đoạn đường không đổi. Hỏi anh Toàn dừng xe để sửa chữa lúc mấy giờ?
Nhận xét: Bài toán này thuộc dạng bài toán về chuyển động, đòi hỏi thí sinh phải nắm vững các công thức tính quãng đường, vận tốc, thời gian và mối quan hệ giữa chúng. Việc thiết lập phương trình dựa trên các dữ kiện của bài toán là chìa khóa để giải quyết bài toán này.
Cho tam giác ABC (AB > BC > AC) có ba góc nhọn và nội tiếp đường tròn (O). Vẽ đường tròn tâm C, bán kính CB cắt đường thẳng AB tại điểm D và cắt đường tròn (O) tại điểm thứ hai là E.
a) Chứng minh đường thẳng DE vuông góc với đường thẳng AC.
b) Đường thẳng DE cắt đường tròn (O) tại điểm thứ hai là F. Các đường thẳng CO, AB cắt nhau tại điểm H và các đường thẳng BE, CF cắt nhau tại điểm K. Chứng minh ∠CKH = ∠CBH.
c) Gọi I là giao điểm của đường thẳng AB và CE. Chứng minh giaibaitoan.com = giaibaitoan.com.
Nhận xét: Đây là một bài toán hình học phức tạp, đòi hỏi thí sinh phải có kiến thức vững chắc về các tính chất của đường tròn, tam giác và các quan hệ hình học. Việc sử dụng các định lý và tính chất hình học một cách linh hoạt là yếu tố then chốt để giải quyết bài toán này. Các câu a, b, c có tính liên kết chặt chẽ với nhau, đòi hỏi thí sinh phải giải quyết từng bước một để đạt được kết quả cuối cùng.
File WORD (dành cho quý thầy, cô): TẢI XUỐNG
Hy vọng đề thi này sẽ là tài liệu hữu ích cho quý thầy cô và các em học sinh trong quá trình ôn luyện và chuẩn bị cho kỳ thi tuyển sinh lớp 10 chuyên Toán.
Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2021 – 2022 sở gd&đt cần thơ là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2021 – 2022 sở gd&đt cần thơ thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2021 – 2022 sở gd&đt cần thơ, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2021 – 2022 sở gd&đt cần thơ, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2021 – 2022 sở gd&đt cần thơ là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: đề tuyển sinh lớp 10 môn toán (chuyên) năm 2021 – 2022 sở gd&đt cần thơ.