giaibaitoan.com xin giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển học sinh giỏi môn Toán 9 vòng 1 năm học 2023 – 2024 của trường THPT chuyên Hà Nội – Amsterdam. Kỳ thi được tổ chức vào ngày 14 tháng 9 năm 2023, là một bài kiểm tra năng lực quan trọng, đánh giá khả năng giải quyết các bài toán đa dạng và sâu sắc của học sinh.
Đề thi năm nay được đánh giá là có độ khó cao, đòi hỏi học sinh không chỉ nắm vững kiến thức nền tảng mà còn cần có tư duy logic, khả năng phân tích và tổng hợp thông tin tốt. Các bài toán được thiết kế một cách sáng tạo, kết hợp nhiều kiến thức khác nhau, tạo ra những thử thách thú vị cho thí sinh.
Dưới đây là trích dẫn nội dung chi tiết của đề thi:
Với các số nguyên dương a, b, c, d thỏa mãn a + b + c + d = 2024, tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = ab + bc + cd.
Nhận xét: Đây là một bài toán về tối ưu hóa, đòi hỏi học sinh phải sử dụng các kỹ năng biến đổi đại số, đánh giá và tìm ra các điều kiện để biểu thức P đạt giá trị lớn nhất và nhỏ nhất. Bài toán này có thể được giải bằng nhiều phương pháp khác nhau, ví dụ như sử dụng bất đẳng thức, phương pháp xét các trường hợp đặc biệt, hoặc sử dụng phương pháp đạo hàm (nếu học sinh đã được làm quen).
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh AB, AC lần lượt lấy các điểm M, N và trên cạnh BC lấy các điểm P, Q sao cho tứ giác MNPQ là hình vuông. Gọi E là giao điểm của CM với PN, F là giao điểm của BN với MQ. 1) Chứng minh rằng đường thẳng PF song song với đường thẳng CM. 2) Lấy điểm G trên đoạn thẳng MN sao cho GM = QF. Chứng minh: Tam giác GEF cân và đường thẳng AG vuông góc với đường thẳng EF. 3) Đường thẳng qua Q song song với GE cắt đường thẳng qua P song song với GF tại S, các đường thẳng SM, SN cắt BC lần lượt tại K, L. Chứng minh: KL2 = giaibaitoan.com.
Nhận xét: Bài toán này tập trung vào kiến thức về hình học, bao gồm các tính chất của hình vuông, tam giác vuông, đường thẳng song song, và các định lý về tam giác đồng dạng. Để giải bài toán này, học sinh cần có khả năng vẽ hình chính xác, phân tích các mối quan hệ giữa các điểm và đường thẳng, và sử dụng các công cụ hình học để chứng minh các kết luận.
Một tập con A của tập hợp các số nguyên dương được gọi là tập tốt nếu thỏa mãn đồng thời các điều kiện sau: i) Tập A chứa ít nhất 2 phần tử. ii) Phần tử lớn nhất của tập A là 2023. iii) Với mọi cặp phần tử a, b thuộc A mà a > b, ta luôn có (a – b)/(a;b) thuộc A, trong đó (a;b) là ước chung lớn nhất của a và b. 1) Chỉ ra một tập tốt có nhiều phần tử nhất. 2) Xác định tất cả các tập tốt.
Nhận xét: Đây là một bài toán về số học, đòi hỏi học sinh phải hiểu rõ về các khái niệm như ước chung lớn nhất, tập hợp, và các tính chất của số nguyên dương. Bài toán này có tính chất khám phá cao, đòi hỏi học sinh phải suy luận logic và tìm ra các quy luật để giải quyết vấn đề.
Nhìn chung, đề thi chọn đội tuyển học sinh giỏi Toán 9 vòng 1 trường THPT chuyên Hà Nội – Amsterdam năm 2023 – 2024 là một đề thi chất lượng, có tính phân loại cao, và phù hợp với mục tiêu đánh giá năng lực của học sinh giỏi. Việc giải đề thi này sẽ giúp học sinh rèn luyện kỹ năng giải toán, mở rộng kiến thức, và chuẩn bị tốt cho các kỳ thi tiếp theo.
Bài toán đề thi hsg toán 9 vòng 1 năm 2023 – 2024 trường thpt chuyên hà nội – amsterdam là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán đề thi hsg toán 9 vòng 1 năm 2023 – 2024 trường thpt chuyên hà nội – amsterdam thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán đề thi hsg toán 9 vòng 1 năm 2023 – 2024 trường thpt chuyên hà nội – amsterdam, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề thi hsg toán 9 vòng 1 năm 2023 – 2024 trường thpt chuyên hà nội – amsterdam, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán đề thi hsg toán 9 vòng 1 năm 2023 – 2024 trường thpt chuyên hà nội – amsterdam là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: đề thi hsg toán 9 vòng 1 năm 2023 – 2024 trường thpt chuyên hà nội – amsterdam.