Đề thi học kỳ 2 Toán 11 năm học 2020 – 2021 trường THCS & THPT Ngọc Lâm – Đồng Nai gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án.
Trích dẫn đề thi học kỳ 2 Toán 11 năm 2020 – 2021 trường Ngọc Lâm – Đồng Nai:
+ Cho định nghĩa bông tuyết von Koch như sau: Bông tuyết đầu tiên K1 là một tam giác đều có cạnh bằng 1. Tiếp đó, chia mỗi cạnh của tam giác thành ba đoạn bằng nhau và thay mỗi đoạn ở giữa bởi hai đoạn bằng nó sao cho chúng tạo với đoạn bỏ đi một tam giác đều về phía ngoài, ta được bông tuyết K2 cứ tiếp tục như vậy, cho ta một dãy các bông tuyết K1, K2, K3, …, Kn. Gọi Cn là chu vi của bông tuyết Kn. Hãy tính limCn.
+ Cho a và b là hai đường thẳng chéo nhau, biết a ⊂ (P), b ⊂ (Q) và (P)//(Q). Khẳng định nào sau đây là sai?
A. Khoảng cách giữa hai đường thẳng a và b bằng khoảng cách từ đường thẳng a đến mặt phẳng (Q).
B. Khoảng cách giữa hai đường thẳng a và b bằng khoảng cách từ một điểm A tùy ý thuộc đường thẳng a đến mặt phẳng (Q).
C. Khoảng cách giữa hai đường thẳng a và b bằng độ dài đoạn thẳng vuông góc chung của chúng.
D. Khoảng cách giữa hai đường thẳng a và b không bằng khoảng cách giữa hai mặt phẳng (P) và (Q).
+ Trong không gian cho điểm A và mặt phẳng (P). Mệnh đề nào dưới đây đúng?
A. Có vô số đường thẳng đi qua A và vuông góc với (P).
B. Có đúng một đường thẳng đi qua A và vuông góc với (P).
C. Có đúng hai đường thẳng đi qua A và vuông góc với (P).
D. Không tồn tại đường thẳng đi qua A và vuông góc với (P).
Bài toán đề thi học kỳ 2 toán 11 năm 2020 – 2021 trường ngọc lâm – đồng nai là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán đề thi học kỳ 2 toán 11 năm 2020 – 2021 trường ngọc lâm – đồng nai thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán đề thi học kỳ 2 toán 11 năm 2020 – 2021 trường ngọc lâm – đồng nai, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề thi học kỳ 2 toán 11 năm 2020 – 2021 trường ngọc lâm – đồng nai, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán đề thi học kỳ 2 toán 11 năm 2020 – 2021 trường ngọc lâm – đồng nai là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: đề thi học kỳ 2 toán 11 năm 2020 – 2021 trường ngọc lâm – đồng nai.