Logo Header
  1. Môn Toán
  2. đề học sinh giỏi toán 8 năm 2021 – 2022 phòng gd&đt hà đông – hà nội

đề học sinh giỏi toán 8 năm 2021 – 2022 phòng gd&đt hà đông – hà nội

giaibaitoan.com xin giới thiệu đến quý thầy cô giáo và các em học sinh lớp 8 đề thi giao lưu học sinh giỏi môn Toán 8 năm học 2021 – 2022 do Phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội tổ chức. Đề thi này là một tài liệu tham khảo quý giá cho việc ôn luyện và nâng cao kiến thức, kỹ năng giải toán, đặc biệt là đối với các em học sinh có năng khiếu và mong muốn đạt thành tích cao trong các kỳ thi học sinh giỏi.

Dưới đây là nội dung chi tiết của đề thi:

  1. Bài toán 1: Tìm giá trị lớn nhất của biểu thức

    Cho các số dương a, b, c thỏa mãn a + b + c = 2022. Tìm giá trị lớn nhất của biểu thức P (biểu thức P không được cung cấp cụ thể trong đoạn trích, cần bổ sung để phân tích đầy đủ).

    Nhận xét: Đây là một bài toán về bất đẳng thức, đòi hỏi học sinh phải vận dụng linh hoạt các bất đẳng thức cơ bản như bất đẳng thức Cauchy-Schwarz, bất đẳng thức AM-GM hoặc phương pháp đánh giá để tìm ra giá trị lớn nhất của biểu thức P. Việc xác định chính xác biểu thức P là cần thiết để đưa ra lời giải cụ thể.

  2. Bài toán 2: Hình học – Tam giác vuông và đường cao

    Cho tam giác ABC vuông tại A (AC > AB). Vẽ đường cao AH (H thuộc BC). Trên tia đối của tia BC lấy điểm K sao cho KH = HA. Qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P.

    1. Chứng minh AKC đồng dạng BPC.
    2. Gọi Q là trung điểm của BP. Chứng minh BP BC.
    3. Tia AQ cắt BC tại I. Chứng minh: HB AH BC IB.

    Nhận xét: Bài toán này tập trung vào kiến thức về tam giác vuông, đường cao, hệ thức lượng trong tam giác vuông, và các trường hợp đồng dạng của tam giác. Việc chứng minh các cặp tam giác đồng dạng là bước quan trọng để giải quyết các câu hỏi tiếp theo. Câu c đòi hỏi sự kết hợp kiến thức về trung điểm, đường thẳng song song và các tính chất của tỉ lệ thức.

  3. Bài toán 3: Vị trí tương đối và khoảng cách

    Có 5 điểm nằm trong một hình vuông cạnh a = 36,7 (đơn vị dài). Chứng minh rằng tồn tại một điểm nằm trong hình vuông mà khoảng cách từ điểm đó đến 5 điểm nói trên đều lớn hơn 10.

    Nhận xét: Đây là một bài toán về hình học và tư duy logic. Bài toán này có thể được giải quyết bằng phương pháp chia nhỏ hình vuông thành các ô vuông nhỏ hơn và sử dụng nguyên lý Dirichlet (còn gọi là nguyên lý chuồng bồ câu) để chứng minh sự tồn tại của điểm cần tìm. Độ khó của bài toán nằm ở việc tìm ra cách chia hình vuông hợp lý và chứng minh được khoảng cách từ điểm đó đến 5 điểm đã cho đều lớn hơn 10.

Đánh giá chung: Đề thi có cấu trúc rõ ràng, bao gồm các bài toán thuộc nhiều lĩnh vực khác nhau của chương trình Toán lớp 8. Các bài toán có độ khó tăng dần, đòi hỏi học sinh phải có kiến thức vững chắc, kỹ năng giải toán tốt và khả năng tư duy sáng tạo. Đề thi này là một công cụ hữu ích để đánh giá năng lực của học sinh và giúp các em làm quen với các dạng bài thường gặp trong các kỳ thi học sinh giỏi.

images-post/de-hoc-sinh-gioi-toan-8-nam-2021-2022-phong-gd-dt-ha-dong-ha-noi-1.jpg

File đề học sinh giỏi toán 8 năm 2021 – 2022 phòng gd&đt hà đông – hà nội PDF Chi Tiết

Giải bài toán đề học sinh giỏi toán 8 năm 2021 – 2022 phòng gd&đt hà đông – hà nội: Phương Pháp, Mẹo Học Hiệu Quả và Ví Dụ Chi Tiết

Bài toán đề học sinh giỏi toán 8 năm 2021 – 2022 phòng gd&đt hà đông – hà nội là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.

1. Tầm Quan Trọng Của Việc Giải Bài Toán đề học sinh giỏi toán 8 năm 2021 – 2022 phòng gd&đt hà đông – hà nội

Bài toán đề học sinh giỏi toán 8 năm 2021 – 2022 phòng gd&đt hà đông – hà nội thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.

  • Rèn luyện tư duy logic: Việc giải các bài toán thuộc dạng này giúp bạn phát triển khả năng tư duy phân tích, nhận biết mối quan hệ giữa các yếu tố trong bài toán.
  • Củng cố kiến thức: Qua quá trình luyện tập, bạn sẽ hiểu sâu hơn về các công thức, định lý, và phương pháp áp dụng.
  • Chuẩn bị cho kỳ thi: Việc làm quen với dạng bài này sẽ giúp bạn tự tin hơn khi bước vào phòng thi.

2. Phương Pháp Giải Bài Toán đề học sinh giỏi toán 8 năm 2021 – 2022 phòng gd&đt hà đông – hà nội

Để giải hiệu quả bài toán đề học sinh giỏi toán 8 năm 2021 – 2022 phòng gd&đt hà đông – hà nội, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:

Bước 1: Hiểu Đề Bài

  • Đọc kỹ đề bài để nắm bắt yêu cầu chính xác.
  • Xác định các yếu tố đã cho và cần tìm.
  • Phân tích mối liên hệ giữa các yếu tố.

Bước 2: Lựa Chọn Phương Pháp Giải

Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:

  • Phương pháp trực tiếp: Sử dụng các công thức hoặc định lý có sẵn để giải bài.
  • Phương pháp gián tiếp: Biến đổi bài toán về một dạng quen thuộc hoặc dễ xử lý hơn.
  • Sử dụng đồ thị: Trong trường hợp bài toán liên quan đến hàm số hoặc biểu đồ.

Bước 3: Triển Khai Lời Giải

  • Áp dụng công thức và phương pháp đã chọn.
  • Trình bày các bước giải rõ ràng, logic.
  • Kiểm tra lại từng bước để đảm bảo không có sai sót.

Bước 4: Kiểm Tra Kết Quả

  • So sánh kết quả với yêu cầu đề bài.
  • Đánh giá xem lời giải có đáp ứng đầy đủ yêu cầu chưa.

3. Những Mẹo Học Hiệu Quả Khi Giải Bài Toán đề học sinh giỏi toán 8 năm 2021 – 2022 phòng gd&đt hà đông – hà nội

Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:

Mẹo 1: Nắm Vững Kiến Thức Cơ Bản

Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.

Mẹo 2: Luyện Tập Thường Xuyên

Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.

Mẹo 3: Phân Tích Sai Lầm

Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.

Mẹo 4: Sử Dụng Tài Liệu Tham Khảo

Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.

4. Ví Dụ Chi Tiết Về Bài Toán đề học sinh giỏi toán 8 năm 2021 – 2022 phòng gd&đt hà đông – hà nội

Ví Dụ 1: Đề Bài Cụ Thể

Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”

Lời Giải:

  • 1. Phân tích đề bài: [Chi tiết phân tích các yếu tố]
  • 2. Sử dụng phương pháp: [Phương pháp áp dụng và lý do chọn phương pháp này]
  • 3. Triển khai từng bước:
    • Bước 1: [Mô tả bước đầu tiên]
    • Bước 2: [Mô tả bước tiếp theo]

4. Kết quả cuối cùng: [Đáp án và kiểm tra lại đáp án].

Ví Dụ 2: Bài Tập Nâng Cao

Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:

  • Đề bài: “Chứng minh rằng [nội dung đề bài nâng cao].”
  • Gợi ý lời giải: [Cách tiếp cận và các bước triển khai chi tiết].

5. Tài Liệu Hỗ Trợ Học Tập

Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề học sinh giỏi toán 8 năm 2021 – 2022 phòng gd&đt hà đông – hà nội, dưới đây là một số nguồn hữu ích:

  • Sách tham khảo: Các sách chuyên đề về toán học.
  • Website học toán: Những trang web uy tín cung cấp bài tập và lời giải chi tiết.
  • Video bài giảng: Các kênh YouTube hoặc khóa học trực tuyến giúp bạn hiểu sâu hơn về phương pháp giải.

6. Lời Khuyên Từ Chuyên Gia

Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.

7. Kết Luận

Bài toán đề học sinh giỏi toán 8 năm 2021 – 2022 phòng gd&đt hà đông – hà nội là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.

Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!

>> Xem thêm đáp án chi tiết về: đề học sinh giỏi toán 8 năm 2021 – 2022 phòng gd&đt hà đông – hà nội.

Icon Shopee