https://giaibaitoan.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra chọn đội tuyển tham gia kỳ thi học sinh giỏi cấp thành phố môn Toán 12 năm học 2022 – 2023 trường THPT chuyên Hà Nội – Amsterdam.
Trích dẫn đề chọn học sinh giỏi Toán 12 năm 2022 – 2023 trường chuyên Hà Nội – Amsterdam:
+ Cho đường cong (C) có phương trình y = x3 – 3×2 + 2x – 2022. Với mỗi điểm M thuộc (C), gọi dM là tiếp tuyến của đường cong (C) tại M. Trên (C) lấy điểm M1 có hoành độ xM1 = 2022. Từ điểm M1 ta xây dựng các điểm M2, M3, …, Mn theo quy tắc: điểm Mi+1 (i = 1, 2, …, n – 1 với n thuộc N, n />= 2) là điểm chung thứ hai của dMi (dMi là tiếp tuyến của đường cong (C) tại điểm Mi) với đường cong (C). Gọi xM2, xM3,…, XMn theo thứ tự là hoành độ của các điểm M2, M3, …, Mn. Tìm giá trị nhỏ nhất của n để (f(xMn) + xMn + 2021) chia hết cho 2^2022.
+ Cho hình lập phương ABCD.A’B’C’D’. Trên các đoạn thẳng BD, AB’ lần lượt lấy các điểm M, N không trùng với các đỉnh của hình lập phương sao cho BM = B’N. Gọi a, b theo thứ tự là số đo góc tạo bởi đường thẳng MN với các đường thẳng BD, AB’. a) Chứng minh rằng cos2a + cos2b = 1/2. b) Xác định vị trí của các điểm M, N sao cho độ dài đoạn thẳng MN ngắn nhất. Khi đó MN có phải đoạn vuông góc chung của hai đường thẳng BD và AB’ không? c) Giả sử các điểm H, K, L (khác điểm A) theo thứ tự di động trên các tia AB, AD, AA’ thỏa mãn. Chứng minh rằng mặt phẳng (HKL) luôn đi qua một điểm cố định khi H, K, L di động thỏa mãn điều kiện trên.
+ Một kỳ thi học sinh giỏi được diễn ra trong 2 ngày. Điểm đánh giá mỗi ngày dùng k (k /> 2) giá trị khác nhau (chẳng hạn với k = 2 thì đánh giá là “đạt” (tức là 1) hoặc “không đạt” (tức là 0); với k = 8 thì điểm số dùng để đánh giá là 0; 1; 2; 3; 4; 5; 6; 7). Hãy xác định số nhiều nhất các học sinh dự thi sao cho có thể xảy ra trường hợp là trong k học sinh tùy ý, luôn có một ngày thi mà kết quả của k học sinh này đôi một khác nhau.
Bài toán đề chọn học sinh giỏi toán 12 năm 2022 – 2023 trường chuyên hà nội – amsterdam là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán đề chọn học sinh giỏi toán 12 năm 2022 – 2023 trường chuyên hà nội – amsterdam thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán đề chọn học sinh giỏi toán 12 năm 2022 – 2023 trường chuyên hà nội – amsterdam, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề chọn học sinh giỏi toán 12 năm 2022 – 2023 trường chuyên hà nội – amsterdam, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán đề chọn học sinh giỏi toán 12 năm 2022 – 2023 trường chuyên hà nội – amsterdam là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: đề chọn học sinh giỏi toán 12 năm 2022 – 2023 trường chuyên hà nội – amsterdam.