Logo Header
  1. Môn Toán
  2. đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt hưng yên

đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt hưng yên

https://giaibaitoan.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi chọn học sinh giỏi cấp Quốc gia môn Toán THPT năm học 2024 – 2025 sở Giáo dục và Đào tạo tỉnh Hưng Yên; kỳ thi được diễn ra vào ngày 27 và 28 tháng 08 năm 2024.

Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán THPT năm 2024 – 2025 sở GD&ĐT Hưng Yên:

+ Xét lưới ô vuông 2024 x 2024. Trên lưới ô vuông đó luôn có ít nhất một trong hai loại rắn là rắn đỏ và rắn lục. Rắn đỏ có chiều dài bằng k sẽ chiếm giữ k ô vuông nằm ngang liên tiếp và không chiếm giữ ô vuông nào khác; rắn lục có chiều dài bằng k sẽ chiếm giữ k ô vuông nằm dọc liên tiếp và cũng không chiếm giữ ô vuông nào khác (k là số nguyên dương nhỏ hơn hoặc bằng 2024). Biết trên lưới ô vuông luôn có ít nhất một con rắn và thỏa mãn đồng thời các điều kiện dưới đây: i) Không có ô vuông nào được chiếm giữ bởi nhiều hơn 1 con rắn. ii) Nếu có một ô vuông trong lưới ở ngay bên trái hoặc ngay bên phải con rắn đỏ thì ô vuông đó bị chiếm giữ bởi một con rắn lục. ili) Nếu có một ô vuông trong lưới ở ngay bên trên hoặc ngay bên dưới con rắn lục thì ô vuông đó bị chiếm giữ bởi một con rắn đỏ. Gọi S là tổng bình phương chiều dài các con rắn trong lưới ô vuông. a) Chứng minh tồn tại cách sắp xếp các con rắn trên lưới ô vuông này sao cho giá trị của S là 20243 20243 hoặc 41. b) Tìm giá trị nhỏ nhất của S.

+ Cho tam giác ABC nội tiếp đường tròn (O) và có trực tâm H. Gọi N là trung điểm đoạn thẳng OH. Gọi D, E, F lần lượt là hình chiếu vuông góc của A, B, C xuống BC, CA, AB. Gọi Ha, Hb, Hc lần lượt là điểm đối xứng với H qua BC, CA, AB. Tiếp tuyến tại C và Hb của đường tròn (O) cắt nhau tại Q, tiếp tuyến tại B và Hc của đường tròn (O) cắt nhau tại P. a) Chứng minh P, Q, H cùng nằm trên một đường thẳng vuông góc với AN. b) Gọi (Oa) là đường tròn ngoại tiếp tam giác có ba đỉnh là P, Q và giao điểm hai tiếp tuyến tại B, C của đường tròn (O). Định nghĩa các đường tròn (Ob), (Oc) tương tự như (Oa). Chứng minh rằng tâm đẳng phương của ba đường tròn (Oa), (Ob), (Oc) nằm trên đường thẳng OH.

images-post/de-chon-doi-tuyen-thi-hsg-qg-mon-toan-thpt-nam-2024-2025-so-gd-dt-hung-yen-1.jpgimages-post/de-chon-doi-tuyen-thi-hsg-qg-mon-toan-thpt-nam-2024-2025-so-gd-dt-hung-yen-2.jpg

File đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt hưng yên PDF Chi Tiết

Giải bài toán đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt hưng yên: Phương Pháp, Mẹo Học Hiệu Quả và Ví Dụ Chi Tiết

Bài toán đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt hưng yên là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.

1. Tầm Quan Trọng Của Việc Giải Bài Toán đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt hưng yên

Bài toán đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt hưng yên thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.

  • Rèn luyện tư duy logic: Việc giải các bài toán thuộc dạng này giúp bạn phát triển khả năng tư duy phân tích, nhận biết mối quan hệ giữa các yếu tố trong bài toán.
  • Củng cố kiến thức: Qua quá trình luyện tập, bạn sẽ hiểu sâu hơn về các công thức, định lý, và phương pháp áp dụng.
  • Chuẩn bị cho kỳ thi: Việc làm quen với dạng bài này sẽ giúp bạn tự tin hơn khi bước vào phòng thi.

2. Phương Pháp Giải Bài Toán đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt hưng yên

Để giải hiệu quả bài toán đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt hưng yên, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:

Bước 1: Hiểu Đề Bài

  • Đọc kỹ đề bài để nắm bắt yêu cầu chính xác.
  • Xác định các yếu tố đã cho và cần tìm.
  • Phân tích mối liên hệ giữa các yếu tố.

Bước 2: Lựa Chọn Phương Pháp Giải

Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:

  • Phương pháp trực tiếp: Sử dụng các công thức hoặc định lý có sẵn để giải bài.
  • Phương pháp gián tiếp: Biến đổi bài toán về một dạng quen thuộc hoặc dễ xử lý hơn.
  • Sử dụng đồ thị: Trong trường hợp bài toán liên quan đến hàm số hoặc biểu đồ.

Bước 3: Triển Khai Lời Giải

  • Áp dụng công thức và phương pháp đã chọn.
  • Trình bày các bước giải rõ ràng, logic.
  • Kiểm tra lại từng bước để đảm bảo không có sai sót.

Bước 4: Kiểm Tra Kết Quả

  • So sánh kết quả với yêu cầu đề bài.
  • Đánh giá xem lời giải có đáp ứng đầy đủ yêu cầu chưa.

3. Những Mẹo Học Hiệu Quả Khi Giải Bài Toán đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt hưng yên

Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:

Mẹo 1: Nắm Vững Kiến Thức Cơ Bản

Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.

Mẹo 2: Luyện Tập Thường Xuyên

Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.

Mẹo 3: Phân Tích Sai Lầm

Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.

Mẹo 4: Sử Dụng Tài Liệu Tham Khảo

Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.

4. Ví Dụ Chi Tiết Về Bài Toán đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt hưng yên

Ví Dụ 1: Đề Bài Cụ Thể

Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”

Lời Giải:

  • 1. Phân tích đề bài: [Chi tiết phân tích các yếu tố]
  • 2. Sử dụng phương pháp: [Phương pháp áp dụng và lý do chọn phương pháp này]
  • 3. Triển khai từng bước:
    • Bước 1: [Mô tả bước đầu tiên]
    • Bước 2: [Mô tả bước tiếp theo]

4. Kết quả cuối cùng: [Đáp án và kiểm tra lại đáp án].

Ví Dụ 2: Bài Tập Nâng Cao

Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:

  • Đề bài: “Chứng minh rằng [nội dung đề bài nâng cao].”
  • Gợi ý lời giải: [Cách tiếp cận và các bước triển khai chi tiết].

5. Tài Liệu Hỗ Trợ Học Tập

Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt hưng yên, dưới đây là một số nguồn hữu ích:

  • Sách tham khảo: Các sách chuyên đề về toán học.
  • Website học toán: Những trang web uy tín cung cấp bài tập và lời giải chi tiết.
  • Video bài giảng: Các kênh YouTube hoặc khóa học trực tuyến giúp bạn hiểu sâu hơn về phương pháp giải.

6. Lời Khuyên Từ Chuyên Gia

Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.

7. Kết Luận

Bài toán đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt hưng yên là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.

Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!

>> Xem thêm đáp án chi tiết về: đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt hưng yên.