giaibaitoan.com xin giới thiệu đến quý thầy cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển học sinh giỏi môn Toán cấp Quốc gia THPT năm học 2024 – 2025 do Sở Giáo dục và Đào tạo tỉnh Đồng Tháp tổ chức. Kỳ thi được diễn ra vào ngày 08 tháng 08 năm 2024, đề thi được công bố kèm theo đáp án và hướng dẫn chấm điểm chi tiết.
Đề thi năm nay được đánh giá là có độ khó cao, phân loại rõ ràng học sinh, đòi hỏi thí sinh phải có kiến thức vững chắc, kỹ năng giải quyết vấn đề linh hoạt và khả năng tư duy sáng tạo. Dưới đây là nội dung chi tiết của đề thi:
Cho số thực dương a. Xét dãy số (xn) xác định bởi x1 = a và xn+1 = xn3 − xn2 + 1 với mọi n ≥ 1.
Nhận xét: Bài toán này tập trung vào việc khảo sát dãy số, sử dụng phương pháp quy nạp để chứng minh bất đẳng thức và phân tích điều kiện để dãy số hội tụ. Câu a yêu cầu thí sinh phải có kỹ năng biến đổi và đánh giá bất đẳng thức tốt. Câu b đòi hỏi sự hiểu biết về giới hạn của dãy số và điều kiện hội tụ.
Cho tam giác nhọn, không cân ABC có các đường cao BE, CF. Đường tròn đường kính BE và đường tròn đường kính CF cắt nhau tại các điểm X, Y. Đoạn thẳng BE cắt đường tròn đường kính CF tại điểm N. Đoạn thẳng CF cắt đường tròn đường kính BE tại điểm P. Các đường thẳng XY và EF cắt nhau tại M. Chứng minh rằng:
Nhận xét: Bài toán hình học này đòi hỏi thí sinh phải có kiến thức vững chắc về đường tròn, đường cao trong tam giác và các tính chất liên quan. Việc sử dụng các tính chất của giao điểm của đường tròn và đường thẳng, cùng với việc áp dụng định lý Ceva hoặc Menelaus có thể giúp giải quyết bài toán một cách hiệu quả. Câu b là một kết quả khá thú vị và đòi hỏi sự quan sát tinh tế.
Kí hiệu S là tập hợp 2024 số nguyên dương đầu tiên. Hỏi có tất cả bao nhiêu tập con khác rỗng của S mà tổng tất cả các số thuộc mỗi tập con đều chia hết cho 256?
Nhận xét: Bài toán tổ hợp này mang tính chất thử thách cao, đòi hỏi thí sinh phải có kiến thức về số học, đặc biệt là tính chất chia hết. Việc tìm ra một phương pháp tiếp cận hiệu quả để đếm số lượng tập con thỏa mãn điều kiện đề bài là một vấn đề không hề đơn giản. Có thể cần phải sử dụng các kỹ thuật đếm nâng cao hoặc các kiến thức về đại số tuyến tính để giải quyết bài toán này.
Đề thi chọn đội tuyển HSG Quốc gia môn Toán THPT năm 2024 – 2025 tỉnh Đồng Tháp là một tài liệu tham khảo hữu ích cho các em học sinh đang luyện thi học sinh giỏi. Việc giải chi tiết đề thi này sẽ giúp các em củng cố kiến thức, rèn luyện kỹ năng và làm quen với dạng đề thi thực tế.
Bài toán đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt đồng tháp là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt đồng tháp thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt đồng tháp, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt đồng tháp, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt đồng tháp là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: đề chọn đội tuyển thi hsg qg môn toán thpt năm 2024 – 2025 sở gd&đt đồng tháp.