Chuyên đề lũy thừa, mũ và logarit do thầy Bùi Trần Duy Tuấn biên soạn nhằm làm tư liệu cho các em lớp 12 ôn thi kỳ thi THPT Quốc gia tham khảo, giúp các em ôn lại kiến thức nhanh chóng và hiệu quả hơn. Tài liệu gồm 341 trang tuyển tập kiến thức, dạng toán, thủ thuật Casio và bài tập trắc nghiệm có đáp án và lời giải chi tiết chuyên đề lũy thừa, mũ và logarit trong chương trình Giải tích 12 chương 2.
Chủ đề 1. Lũy thừa
A. Kiến thức cần nắm
I. Lũy thừa
II. Căn bậc n
B. Một số dạng toán liên quan về lũy thừa
I. Viết lũy thừa với dạng số mũ hữu tỉ
II. Tính giá trị của biểu thức
III. Rút gọn biểu thức
IV. So sánh các số
C. Thủ thuật casio
I. Phương pháp hệ số hóa biến
II. Một số bài toán minh họa
D. Bài tập trắc nghiệm
Chủ đề 2. Logarit
A. Kiến thức cơ bản
B. Một số dạng toán về logarit
I. Tính, rút gọn giá trị của một biểu thức chứa logarit
II. Biểu diễn một logarit theo các logarit cho trước
C. Thủ thuật casio
I. Phương pháp hệ số hóa biến
II. Một số bài toán minh họa
D. Bài tập trắc nghiệm
Chủ đề 3. Hàm số lũy thừa – mũ – logarit
A. Kiến thức cần nắm
I. Hàm lũy thừa
II. Hàm số mũ
III. Hàm số logarit
B. Một số dạng toán thường gặp
I. Tìm tập xác định của hàm số
II. Tính đạo hàm của hàm số
III. Tính đơn điệu của hàm số
IV. Đồ thị của hàm số
V. Tính giá trị biểu thức
C. Bài tập trắc nghiệm
[ads]
Chủ đề 4. Phương trình, hệ phương trình mũ – logarit
A. Các phương pháp giải phương trình mũ và logarit
I. Phương pháp đưa về cùng cơ số giải phương trình mũ và logarit
II. Phương pháp đặt ẩn phụ giải phương trình mũ và logarit
III. Phương pháp logarit hóa giải phương trình mũ và logarit
IV. Phương pháp hàm số để giải phương trình mũ và logarit
V. Phương trình chứa tham số
B. Hệ phương trình mũ và logarit
I. Phương pháp thế
II. Phương pháp biến đổi tương đương
III. Phương pháp đặt ẩn phụ
IV. Phương pháp hàm số
C. Thủ thuật casio giải phương trình mũ – logarit
I. Phương pháp sử dụng shift solve
II. Phương pháp Calc
III. Phương pháp sử dụng mode 7
D. Bài tập trắc nghiệm
Chủ đề 5. Bất phương trình mũ – logarit
A. Phương pháp giải bất phương trình mũ và loagrit
I. Phương pháp biến đổi tương đương cho bất phương trình mũ
II. Phương pháp biến đổi tương đương cho bất phương trình logarit
III. Phương pháp đặt ẩn phụ giải bất phương trình mũ và loagrit
IV. Phương pháp logarit hóa giải bất phương trình mũ và logarit
V. Phương pháp sử dụng tính chất của hàm số để giải bất phương trình mũ và logarit
VI. Bất phương trình chứa tham số
B. Thủ thuật casio giải bất phương trình mũ và loagrit
I. Phương pháp 1. Calc theo chiều thuận
II. Phương pháp 2 . Calc theo chiều nghịch
III. Phương pháp 3. Lập bảng giá trị mode 7
IV. Phương pháp 4. Lược đồ con rắn
C. Bài tập trắc nghiệm
Chủ đề 6. Các bài toán ứng dụng của hàm số mũ – logarit
A. Các dạng toán ứng dụng của hàm số lũy thừa – mũ – logarit
Một số khái niệm liên quan đến bài toán ngân hàng
I. Lãi đơn
1. Dạng 1. Cho biết vốn và lãi suất, tìm tổng số tiền có được sau n kỳ
2. Dạng 2. Cho biết vốn và lãi suất, tổng số tiền có được sau n kỳ. Tìm n
3. Dạng 3. Cho biết vốn, tổng số tiền có được sau n kỳ. Tìm lãi suất
4. Dạng 4. Cho biết lãi suất, tổng số tiền có được sau n kỳ, tìm vốn ban đầu
II. Lãi kép
1. Dạng 1. Cho biết vốn và lãi suất, tìm tổng số tiền có được sau n kỳ
2. Dạng 2. Cho biết vốn và lãi suất, tổng số tiền có được sau n kỳ. Tìm n
3. Dạng 3. Cho biết vốn, tổng số tiền có được sau n kỳ. Tìm lãi suất
4. Dạng 4. Cho biết lãi suất, tổng số tiền có được sau n kỳ. Tìm vốn ban đầu
III. Bài toán vay trả góp – góp vốn
IV. Bài toán lãi kép liên tục – công thức tăng trưởng mũ – ứng dụng
Trong lĩnh vực đời sống xã hội
1. Bài toán lãi kép liên tục
2. Bài toán về dân số
V. Ứng dụng trong lĩnh vực khoa học kỹ thuật
B. Bài tập trắc nghiệm
Xem thêm chuyên đề khác do thầy Bùi Trần Duy Tuấn biên soạn:
+ Chuyên đề hàm số – Bùi Trần Duy Tuấn
+ Chuyên đề số phức – Bùi Trần Duy Tuấn
Bài toán chuyên đề lũy thừa, mũ và logarit – bùi trần duy tuấn là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán chuyên đề lũy thừa, mũ và logarit – bùi trần duy tuấn thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán chuyên đề lũy thừa, mũ và logarit – bùi trần duy tuấn, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán chuyên đề lũy thừa, mũ và logarit – bùi trần duy tuấn, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán chuyên đề lũy thừa, mũ và logarit – bùi trần duy tuấn là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: chuyên đề lũy thừa, mũ và logarit – bùi trần duy tuấn.