Tài liệu các dạng bài tập cơ bản về Số phức được biên soạn bởi thầy Đặng Việt Hùng gồm 28 trang tóm tắt lý thuyết, công thức tính và các bài toán số phức có lời giải chi tiết. Thông qua tài liệu, học sinh có thể nắm được phương pháp giải các bài toán số phức cơ bản thường bắt gặp trong chương trình Giải tích 12 chương 4.
Khái quát nội dung tài liệu các dạng bài tập cơ bản về Số phức – Đặng Việt Hùng:
BÀI 1. MỞ ĐẦU VỀ SỐ PHỨC
Phần 1. Khái niệm số phức.
Một số phức z là một biểu thức dạng z = a + bi, trong đó a, b là những số thực và số i thỏa mãn i^2 = -1. Trong đó: i là đơn vị ảo, a được gọi là phần thực của số phức, b được gọi là phần ảo của số phức.
Tập hợp các điểm biểu diễn số phức kí hiệu là C.
Phần 2. Biểu diễn hình học của số phức.
Cho số phức z = a + bi (a, b ∈ R) được biểu diễn bởi điểm M(a; b) (hay M(z)) trong mặt phẳng tọa độ Oxy (hay còn gọi là mặt phẳng phức). Trong đó: trục hoành Ox (trục thực) biểu diễn phần thực a, trục tung Oy (trục ảo) biểu diễn phần ảo b.
Phần 3. Module của số phức.
Cho số phức z = a + bi, module của số phức z kí hiệu là |z| và được tính theo biểu thức: |z| = √(a^2 + b^2).
Phần 4. Số phức liên hợp.
Cho số phức z = a + bi, số phức liên hợp của số phức z kí hiệu là z‾ và được tính theo biểu thức: z‾ = a – bi.
Phần 5. Các phép toán về số phức.
Các phép toán cơ bản về số phức bao gồm: phép cộng, trừ hai số phức, phép nhân hai số phức, phép chia cho số phức khác 0.
Phần 6. Các tính chất của số phức.
Cho số phức z = x + yi , ba tính chất sau của số phức được xếp vào 1 nhóm.
Cho 2 số phức z1 = x1 + y1i và z2 = x2 + y2i, ba tính chất tiếp theo được xếp vào nhóm liên hợp.
Cho 2 số phức z1 = x1 + y1i và z2 = x2 + y2i, ba tính chất tiếp theo được xếp vào nhóm module.
[ads]
BÀI 2. CÁC DẠNG QUỸ TÍCH PHỨC
Phần 1. Các dạng quỹ tích cơ bản.
Đường thẳng: Quỹ tích các điểm M biểu diễn số phức z = x + yi là đường thẳng nếu như M(x;y) có tọa độ thỏa mãn phương trình đường thẳng: Ax + By + C = 0.
Đường tròn: Quỹ tích các điểm M biểu diễn số phức z = x + yi là đường tròn nếu như M(x;y) có tọa độ thỏa mãn phương trình đường tròn (C) : (x – a)^2 + (y – b)^2 = R^2, trong đó I(a;b) là tâm đường tròn và R là bán kính đường tròn.
Đường Elip: Quỹ tích các điểm M biểu diễn số phức z = x + yi là đường elip nếu như M(x;y) có tọa độ thỏa mãn phương trình đường elip (E): x^2/a^2 + y^2/b^2 = 1, trong đó a, b tương ứng là các bán trục lớn và bán trục nhỏ của elip.
Phần 2. Một số dạng toán nâng cao về quỹ tích phức.
Cho hai số phức z1 và z2 được biểu diễn bởi các điểm tương ứng là M1 và M2. Khi đó |z1 – z2| = M1M2.
BÀI 3. PHƯƠNG TRÌNH PHỨC
Phần 1. Căn bậc hai số phức.
Cho số phức z = a + bi, số phức w = x + yi được gọi là căn bậc hai của số phức z nếu w^2 = z hay (x + yi)^2 = a + bi.
Phần 2. Phương trình phức bậc 2.
BÀI 4. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC
1. Khái niệm về dạng lượng giác của số phức.
Cho số phức z = a + bi, số phức trên được gọi là dạng đại số của số phức. Số phức z = r(cosφ + isinφ) được gọi là dạng lượng giác của số phức, trong đó: r: là module của số phức, φ: là argument của số phức.
2. Cách chuyển đổi một số phức từ dạng đại số sang lượng giác.
Để chuyển số phức z = a + bi sang dạng lượng giác z = r(cosφ + isinφ) ta phải tìm được module và argument của số phức.
3. Nhân và chia hai số phức dạng lượng giác.
4. Công thức Moiver và ứng dụng dạng lượng giác của số phức.
Cho số phức z = r(cosφ + isinφ), khi đó z^n = [r(cosφ + isinφ)]n = r^n[cos(nφ) + isin(nφ)].
Bài toán các dạng bài tập cơ bản về số phức – đặng việt hùng là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán các dạng bài tập cơ bản về số phức – đặng việt hùng thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán các dạng bài tập cơ bản về số phức – đặng việt hùng, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán các dạng bài tập cơ bản về số phức – đặng việt hùng, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán các dạng bài tập cơ bản về số phức – đặng việt hùng là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: các dạng bài tập cơ bản về số phức – đặng việt hùng.