https://giaibaitoan.com giới thiệu đến bạn đọc chuyên đề CÁC BÀI TOÁN VẬN DỤNG CAO DÃY SỐ do các tác giả Nguyễn Minh Tuấn và Nguyễn Nhật Linh (thành viên trong nhóm Chinh Phục Olympic Toán) sưu tầm và biên soạn. Tài liệu gồm 85 trang được biên soạn với mục đích chào xuân năm mới Tết n cũng như là món quà cám ơn đối với các bạn đã theo dõi và ủng hộ nhóm tác giả trong thời gian vừa qua.
Như các bạn đã biết, trước kia thì chủ đề dãy số (thuộc chương trình Đại số và Giải tích 11) không phải là một phần quan trọng trong kì thi Trung học Phổ thông Quốc Gia môn Toán, nhưng trong những năm gần đây vấn đề này đã được các trường kết nối với các mảng kiến thức khác như hàm số, mũ và logarit, nguyên hàm và tích phân … yêu cầu chúng ta cần phải tìm hiểu kỹ, sâu và rộng thì mới có thể giải quyết được chúng, điều đó gây ra không ít những bỡ ngỡ, những sự lúng túng cho các bạn lần đầu gặp những bài như thế. Vì vậy trong chủ đề này, nhóm tác giả và bạn đọc sẽ cùng tìm hiểu các bài toán liên quan tới chúng, hy vọng phần nào sẽ giúp bạn đọc có kinh nghiệm và hướng giải quyết khi gặp các bài toán dạng này.
Tài liệu tuyển tập hơn 100 bài toán vận dụng cao dãy số có đáp án và lời giải chi tiết với nhiều dạng toán khác nhau chắc hẳn sẽ mang tới cho bạn đọc một cái nhìn khác và mới lạ hơn về chủ đề dãy số. Hy vọng thông qua ebook này, bạn đọc sẽ học thêm được nhiều điều và rút ra được kinh nghiệm cho bản thân trong việc giải quyết các dạng toán vận dụng cao dãy số mà nhóm tác giả đưa ra và nhiều dạng toán có liên quan khác.
[ads]
Trích dẫn một số bài toán trong tài liệu các bài toán vận dụng cao dãy số – Nguyễn Minh Tuấn, Nguyễn Nhật Linh:
+ Cho dãy số (un) có số hạng đầu tiên u1 ≠ 1 thỏa mãn đẳng thức sau: (log_2 5u1)^2 + (log_2 7u1)^2 = (log_2 5)^2 + (log_2 7)^2 và un+1 = 7un với mọi n ≥ 1. Giá trị nhỏ nhất của n để un ≥ 1111111 bằng?
A. 11. B. 8. C. 9. D. 10.
+ Tam giác mà ba đỉnh của nó là ba trung điểm ba cạnh của tam giác ABC được gọi là tam giác trung bình của tam giác ABC.Ta xây dựng dãy các tam giác A1B1C1, A2B2C2, A3B3C3 … sao cho A1B1C1 là một tam giác đều cạnh bằng 3 và với mỗi số nguyên dương n ≥ 2, tam giác AnBnCn là tam giác trung bình của tam giác An-1Bn-1Cn-1. Với mỗi số nguyên dương n, kí hiệu Sn tương ứng là diện tích hình tròn ngoại tiếp tam giác AnBnCn. Tính tổng S = S1 + S2 + … + Sn + …?
+ Gọi q là công bội của một cấp số nhân, biết tổng ba số hạng đầu bằng 16 4/9, đồng thời theo thứ tự, chúng là số hạng thứ nhất, thứ tư và thứ tám của một cấp số cộng. Hỏi q thuộc khoảng nào sau đây?
Bài toán các bài toán vận dụng cao dãy số – nguyễn minh tuấn, nguyễn nhật linh là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán các bài toán vận dụng cao dãy số – nguyễn minh tuấn, nguyễn nhật linh thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán các bài toán vận dụng cao dãy số – nguyễn minh tuấn, nguyễn nhật linh, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán các bài toán vận dụng cao dãy số – nguyễn minh tuấn, nguyễn nhật linh, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán các bài toán vận dụng cao dãy số – nguyễn minh tuấn, nguyễn nhật linh là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: các bài toán vận dụng cao dãy số – nguyễn minh tuấn, nguyễn nhật linh.