Tài liệu gồm 95 trang được biên soạn bởi thầy Nguyễn Tiến Đạt, tổng hợp hầu hết các dạng toán thường gặp trong chương trình học kỳ 2 Toán 11, bao gồm cả Đại số và Giải tích 11 lẫn Hình học 11, đầy đủ cả phương pháp tự luận và phương pháp trắc nghiệm.
Mục lục tài liệu bí kíp đạt điểm tối đa học kỳ 2 Toán 11 – Nguyễn Tiến Đạt:
PHẦN 1. DÃY SỐ, CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN.
I. PHƯƠNG PHÁP QUY NẠP TOÁN HỌC
II. DÃY SỐ
+ Dạng 1. Thiết lập công thức tính số hạng tổng quát un theo n.
+ Dạng 2. Tính tăng, giảm của dãy số.
+ Dạng 3. Dãy số bị chặn.
III. CẤP SỐ CỘNG
+ Dạng 1. Chứng minh một dãy số un là cấp số cộng.
+ Dạng 2. Tìm số hạng đầu tiên, công sai của cấp số cộng, tìm số hạng thứ k của cấp số cộng, tính tổng k số hạng đầu tiên.
+ Dạng 3. Dựa vào tính chất của cấp số cộng, chứng minh đẳng thức.
IV. CẤP SỐ NHÂN
+ Dạng 1. Chứng minh một dãy un là cấp số nhân.
+ Dạng 2. Xác định số hạng đầu, công bội, xác định số hạng thứ k, tính tổng của n số hạng đầu tiên.
+ Dạng 3. Dựa vào tính chất của cấp số nhân, chứng minh đẳng thức.
PHẦN 2. GIỚI HẠN.
I. GIỚI HẠN DÃY SỐ
+ Dạng 1. un là một phân thức hữu tỉ dạng un = P(n)/Q(n) trong đó P(n), Q(n) là hai đa thức của n.
+ Dạng 2. un la một phân thức hữu tỉ dạng un = P(n)/Q(n) trong đó P(n), Q(n) là các biểu thức chứa căn của n.
+ Dạng 3. un là một phân thức hữu tỉ dạng un = P(n)/Q(n) trong đó P(n), Q(n) là các biểu thức chứa hàm mũ a^n, b^n, c^n.
+ Dạng 4 . Nhân lượng liên hợp.
+ Dạng 5. Giới hạn của một tổng dài dài.
II. GIỚI HẠN HÀM SỐ
+ Dạng 1. Thay trực tiếp được số.
+ Dạng 2. L = lim P(x)/Q(x) (x → x0) với P(x), Q(x) là các đa thức và P(x0) = Q(x0) = 0.
+ Dạng 3. L = lim P(x)/Q(x) (x → x0) với P(x0) = Q(x0) = 0 và P(x), Q(x) là các biểu thức chứa căn cùng bậc.
+ Dạng 4. Thêm bớt số hạng hoặc một biểu thức vắng để khử được dạng vô định.
+ Dạng 5. L = lim P(x)/Q(x) (x → vc) trong đó P(x), Q(x) → vc, dạng này ta còn gọi là dạng vô định vc/vc.
+ Dạng 6. Giới hạn một bên.
+ Dạng 7 . Giới hạn lượng giác.
+ Dạng 8. Sử dụng máy tính: Tính giới hạn.
III. HÀM SỐ LIÊN TỤC
+ Dạng 1. Xét tính liên tục của hàm số tại một điểm.
+ Dạng 2. Hàm số liên tục trên một tập hợp.
+ Dạng 3. Chứng minh phương trình có nghiệm.
[ads]
PHẦN 3. ĐẠO HÀM.
I. QUY TẮC TÍNH ĐẠO HÀM
II. ĐẠO HÀM CẤP CAO
+ Dạng 1. Tính đạo hàm cấp cao của hàm số.
+ Dạng 2. Tìm đạo hàm cấp n của một hàm số.
+ Dạng 3. Chứng minh đẳng thức.
III. PHƯƠNG PHÁP CASIO – VINACAL
PHẦN 4. PHƯƠNG TRÌNH TIẾP TUYẾN.
+ Kĩ thuật lập phương trình tiếp tuyến của đồ thị hàm số bằng máy tính Casio – Vinacal.
PHẦN 5. QUAN HỆ VUÔNG GÓC TRONG KHÔNG GIAN.
+ Dạng 1. Chứng minh đường thẳng vuông góc mặt phẳng.
+ Dạng 2. Chứng minh đường thẳng vuông góc đường thẳng.
+ Dạng 3. Chứng minh mặt phẳng vuông góc với mặt phẳng.
+ Dạng 4. Khoảng cách từ một điểm đến một mặt phẳng: Khoảng cách từ điểm ở đáy đến mặt đứng; Khoảng cách từ chân đường cao tới mặt bên; Khoảng cách từ một điểm không phải chân đường cao tới mặt bên (phương pháp đổi điểm).
+ Dạng 5. Khoảng cách giữa hai đường thẳng chéo nhau.
+ Dạng 6. Góc trong không gian: Góc giữa đường thẳng và mặt phẳng; Góc giữa hai mặt phẳng.
Bài toán bí kíp đạt điểm tối đa học kỳ 2 toán 11 – nguyễn tiến đạt là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán bí kíp đạt điểm tối đa học kỳ 2 toán 11 – nguyễn tiến đạt thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán bí kíp đạt điểm tối đa học kỳ 2 toán 11 – nguyễn tiến đạt, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán bí kíp đạt điểm tối đa học kỳ 2 toán 11 – nguyễn tiến đạt, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán bí kíp đạt điểm tối đa học kỳ 2 toán 11 – nguyễn tiến đạt là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: bí kíp đạt điểm tối đa học kỳ 2 toán 11 – nguyễn tiến đạt.