Theo những thông tin trên internet gần đây, thì cấu trúc đề thi THPT Quốc gia môn Toán năm 2020 sẽ không có nhiều sự khác biệt so với đề chính thức THPT Quốc gia môn Toán năm 2019, do đó, phần nội dung Đại số và Giải tích 11 sẽ chiếm một phần nhỏ trong đề thi, học sinh cần ôn tập lại.
https://giaibaitoan.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 tài liệu trắc nghiệm Đại số và Giải tích 11 trong các đề thi thử THPT Quốc gia môn Toán. Tài liệu gồm 1223 trang được sưu tầm và biên soạn bởi thầy giáo Th.S Nguyễn Chín Em, tuyển tập các câu hỏi và bài tập trắc nghiệm các chuyên đề: Hàm số lượng giác và phương trình lượng giác, Tổ hợp và xác suất, Dãy số – cấp số cộng và cấp số nhân, Giới hạn, Đạo hàm … có đáp án và lời giải chi tiết trong các đề thi thử THPT Quốc gia môn Toán những năm gần đây; giúp các em học sinh khối 12 ôn thi THPT Quốc gia môn Toán.
Nội dung tài liệu được chia thành 05 phần:
+ Chương 1: Hàm số lượng giác và phương trình lượng giác (Trang 3).
+ Chương 2: Tổ hợp – Xác suất (Trang 70).
+ Chương 3: Dãy số – cấp số cộng, cấp số nhân (Trang 239).
+ Chương 4: Giới hạn (Trang 287).
+ Chương 5: Đạo hàm (Trang 337).
[ads]
Trích dẫn tài liệu trắc nghiệm Đại số và Giải tích 11 trong các đề thi thử THPT Quốc gia môn Toán:
+ Cho hai đường thẳng d1 và d2 song song với nhau. Trên d1 có 10 điểm phân biệt, trên d2 có n điểm phân biệt (n ≥ 2). Biết rằng có 1725 tam giác có các đỉnh là ba trong số các điểm thuộc d1 và d2 nói trên. Tìm tổng các chữ số của n.
+ Cho hai điểm A, B thuộc đồ thị hàm số y = sin x trên đoạn [0; π], các điểm C, D thuộc trục Ox sao cho tứ giác ABCD là hình chữ nhật và CD = 2π/3. Độ dài đoạn thẳng BC bằng?
+ Cho hai số thực thỏa mãn x^2 + y^2 = 1. Đặt P = (x^2 + 6xy)/(1 + 2xy + 2y^2). Khẳng định nào sau đây là đúng?
A. Giá trị nhỏ nhất của P là −3. B. Giá trị lớn nhất của P là 1. C. P không có giá trị lớn nhất. D. P không có giá trị nhỏ nhất.
+ Trên parabol (P): y = x2 + 1 lấy hai điểm A(1; 2), B(3; 10). Gọi M là điểm di động trên cung AB của (P), M khác A, B. Gọi S1 là diện tích hình phẳng giới hạn bởi (P) và MA, gọi S2 là diện tích hình phẳng giới hạn bởi (P) và MB. Gọi (x0; y0) là tọa độ của điểm M khi S1 + S2 đạt giá trị nhỏ nhất. Tính x20 + y20.
+ Cho số nguyên dương n và n tam giác A1B1C1, A2B2C2, . . . , AnBnCn, trong đó các điểm Ai+1, Bi+1, Ci+1 lần lượt thuộc các đoạn thẳng BiCi, CiAi, AiBi với i = 1, n − 1 sao cho Ai+1Ci = 2Ai+1Bi, Bi+1Ai = 2Bi+1Ci, Ci+1Bi = 2Ci+1Ai. Gọi S là tổng tất cả diện tích của n tam giác đó. Tìm số nguyên dương n biết rằng S = 3(1 – 2^2018/3^2018) và tam giác A1B1C1 có diện tích bằng 1.
Bài toán trắc nghiệm đại số và giải tích 11 trong các đề thi thử thpt quốc gia môn toán là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán trắc nghiệm đại số và giải tích 11 trong các đề thi thử thpt quốc gia môn toán thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán trắc nghiệm đại số và giải tích 11 trong các đề thi thử thpt quốc gia môn toán, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán trắc nghiệm đại số và giải tích 11 trong các đề thi thử thpt quốc gia môn toán, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán trắc nghiệm đại số và giải tích 11 trong các đề thi thử thpt quốc gia môn toán là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: trắc nghiệm đại số và giải tích 11 trong các đề thi thử thpt quốc gia môn toán.