Tài liệu gồm 42 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng và hướng dẫn phương pháp giải một số dạng toán liên quan đến chủ đề hai mặt phẳng vuông góc trong chương trình Hình học 11 chương 3.
Khái quát nội dung tài liệu bài toán hai mặt phẳng vuông góc – Diệp Tuân:
Dạng 1. Chứng minh hai mặt phẳng vuông góc với nhau.
Để chứng minh hai mặt phẳng (P) và (Q) vuông góc với nhau ta có thể dùng một trong các cách sau:
Cách 1. Chứng minh trong mặt phẳng này có một đường thẳng vuông góc với mặt phẳng kia.
Cách 2. Xác định góc giữa hai mặt phẳng, rồi tính trực tiếp góc đó bằng 90 độ.
Cách 3. Tìm hai vec tơ n1 và n2 lần lượt vuông góc với các mặt phẳng (P) và (Q) rồi chứng minh n1.n2 = 0.
Dạng 2. Xác định góc của hai mặt.
Để tính góc giữa hai mặt phẳng (α) và (β) ta có thể thực hiện theo một trong các cách sau:
Cách 1:
+ Bước 1: Tìm giao tuyến Δ = (α) ∩ (β).
+ Bước 2: Lấy một điểm M ∈ (β). Dựng hình chiếu H của M trên (α) hay MH ⊥ (α).
+ Bước 3: Lấy chân đường vuông góc là H và dựng HN ⊥ Δ.
+ Bước 4: Ta chứng minh MN ⊥ Δ.
+ Bước 5: Kết luận.
Cách 2:
+ Tìm hai đường thẳng a và b lần lượt vuông góc với hai mặt phẳng (α) và (β).
+ Khi đó góc giữa hai đường thẳng a và b chính là góc giữa hai mặt phẳng (α) và (β).
[ads]
Dạng 3. Xác định thiết diện chứa một đường thẳng và vuông góc với một mặt phẳng.
Cho mặt phẳng (α) và đường thẳng a không vuông góc với (α). Xác định mặt phẳng (β) chứa a và vuông góc với (α). Để giải bài toán này ta làm theo các bước sau:
+ Bước 1. Chọn một điểm A thuộc a.
+ Bước 2. Dựng đường thẳng b đi qua A và vuông góc với (α). Khi đó mp(a,b) chính là mặt phẳng (β).
Dạng 4. Ứng dụng công thức hình chiếu tính diện tích.
Giả sử S là diện tích đa giác (H) nằm trong (α) và S’ là diện tích của hình chiếu (H’) của (H) trên (β) thì S’ = S.cosφ trong đó φ là góc giữa hai mặt phẳng (α) và (β).
Bài toán bài toán hai mặt phẳng vuông góc – diệp tuân là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán bài toán hai mặt phẳng vuông góc – diệp tuân thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán bài toán hai mặt phẳng vuông góc – diệp tuân, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán bài toán hai mặt phẳng vuông góc – diệp tuân, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán bài toán hai mặt phẳng vuông góc – diệp tuân là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: bài toán hai mặt phẳng vuông góc – diệp tuân.