Tài liệu gồm 82 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển chọn 114 câu hỏi và bài tập trắc nghiệm có đáp án và lời giải chi tiết về các chủ đề: khoảng cách từ một điểm đến một mặt phẳng, đến một đường thẳng; khoảng cách giữa đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song; khoảng cách giữa hai đường thẳng chéo nhau … trong chương trình Hình học 11 chương 3.
Mục lục tài liệu bài tập trắc nghiệm khoảng cách có đáp án và lời giải:
Phần A. Câu hỏi và bài tập trắc nghiệm.
Dạng 1. Khoảng cách của hai điểm và các bài toán liên quan (Trang 1).
Dạng 2. Khoảng cách từ một điểm đến một mặt phẳng (Trang 3).
+ Khoảng cách từ hình chiếu của đỉnh đến mặt phẳng bên (Trang 3).
+ Khoảng cách từ một điểm bất kỳ đến mặt phẳng (Trang 6).
Dạng 3. Khoảng cách của hai đường thẳng (Trang 11).
Phần B. Lời giải chi tiết.
Dạng 1. Khoảng cách của hai điểm và các bài toán liên quan (Trang 18).
Dạng 2. Khoảng cách từ một điểm đến một mặt phẳng (Trang 22).
+ Khoảng cách từ hình chiếu của đỉnh đến mặt phẳng bên (Trang 22).
+ Khoảng cách từ một điểm bất kỳ đến mặt phẳng (Trang 34).
Dạng 3. Khoảng cách của hai đường thẳng (Trang 54).
[ads]
Trích dẫn bài tập trắc nghiệm khoảng cách có đáp án và lời giải:
+ Cho hình lăng trụ ABC.A’B’C’ có tất cả các cạnh đều bằng a. Góc tạo bởi cạnh bên và mặt phẳng đáy bằng 30 độ. Hình chiếu H của A trên mặt phẳng (A’B’C’) là trung điểm của B’C’. Tính theo a khoảng cách giữa hai mặt phẳng đáy của lăng trụ ABC.A’B’C’.
+ Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA = a, OB = OC = 2a. Gọi M là trung điểm của cạnh BC. Khoảng cách giữa hai đường thẳng OM và AC bằng?
+ Cho khối chóp S.ABCD có đáy là hình vuông, tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt đáy. Mặt cầu ngoại tiếp khối chóp S.ABCD có diện tích 84pi cm2. Khoảng cách giữa hai đường thẳng SA và BD là?
Bài toán bài tập trắc nghiệm khoảng cách có đáp án và lời giải là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán bài tập trắc nghiệm khoảng cách có đáp án và lời giải thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán bài tập trắc nghiệm khoảng cách có đáp án và lời giải, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán bài tập trắc nghiệm khoảng cách có đáp án và lời giải, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán bài tập trắc nghiệm khoảng cách có đáp án và lời giải là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: bài tập trắc nghiệm khoảng cách có đáp án và lời giải.