Tài liệu 195 bài tập trắc nghiệm thể tích khối đa diện nâng cao – Nguyễn Bảo Vương gồm các câu hỏi ở mức độ vận dụng cao dành cho học sinh khá giỏi, có đáp án nằm ở cuối tài liệu.
Trích dẫn tài liệu:
+ Cho lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, góc giữa cạnh bên và đáy bằng 30 độ. Hình chiếu vuông góc của A trên mặt phẳng (A’B’C’) là trung điểm của B’C’. Khi đó góc giữa hai đường thẳng BC và AC’ là?
+ Với một tấm bìa hình vuông, người ta cắt bỏ ở mỗi góc tấm bìa một hình vuông cạnh 12cm (hình 2) rồi gấp lại thành một hình hộp chữ nhật không có nắp. Giả sử dung tích của cái hộp đó là 4800cm3 thì cạnh của tấm bìa ban đầu có độ dài là?
[ads]
+ Cho một tấm nhôm hình vuông cạnh 12dm. Người ta cắt ở bốn góc bốn hình vuông bằng nhau rồi gặp tấm nhôm lại (hình 3) để được một cái hộp chữ nhật không nắp. Tính cạnh của các hình vuông được cắt bỏ sao cho thể tích của khối hộp đó lớn nhất ?
+ Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, có BC = a. Mặt bên SAC vuông góc với đáy, các mặt bên còn lại đều tạo với mặt đáy một góc 45 độ. Thể tích khối chóp S.ABC tính theo a là?
+ Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, góc BAC = 60 độ, mặt bên SAB là tam giác cân và nằm trong mặt phẳng vuông góc với mặt đáy. Mặt phẳng (SCD) tạo với mặt đáy góc 30 độ. Khoảng cách giữa hai đường thẳng SB và AD là?
Bài toán 195 bài tập trắc nghiệm thể tích khối đa diện nâng cao – nguyễn bảo vương là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán 195 bài tập trắc nghiệm thể tích khối đa diện nâng cao – nguyễn bảo vương thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán 195 bài tập trắc nghiệm thể tích khối đa diện nâng cao – nguyễn bảo vương, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán 195 bài tập trắc nghiệm thể tích khối đa diện nâng cao – nguyễn bảo vương, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán 195 bài tập trắc nghiệm thể tích khối đa diện nâng cao – nguyễn bảo vương là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: 195 bài tập trắc nghiệm thể tích khối đa diện nâng cao – nguyễn bảo vương.