https://giaibaitoan.com giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu chuyên đề đường thẳng và mặt phẳng trong không gian, quan hệ song song do thầy Lư Sĩ Pháp biên soạn, tài liệu gồm 54 trang tổng hợp các kiến thức cần nắm, phân dạng bài tập và hướng dẫn giải các dạng toán thuộc chương trình Hình học 11 chương 2, tài liệu được soạn theo hướng tự luận kết hợp với trắc nghiệm, phần tự luận được phân tích và giải chi tiết nhằm giúp học sinh nắm được kỹ thuật giải toán, phần trắc nghiệm có đáp án giúp học sinh rèn luyện, phù hợp với xu hướng kiểm tra – thi cử hiện hành.
§1. ĐẠI CƯƠNG VỀ ĐƯỜNG THẲNG VÀ MẶT PHẲNG
Vấn đề 1. Tìm giao tuyến của hai mặt phẳng: Ta đi tìm hai điểm chung phân bệt của hai mặt phẳng đó. Giao tuyến của chúng là đường thẳng đi qua hai điểm đó.
Vấn đề 2. Tìm giao điểm của đường thẳng d và mặt phẳng (α): Để tìm giao điểm của một đường thẳng d và một mặt phẳng (α), ta có thể đưa về việc tìm giao điểm của đường thẳng d với một đường thẳng d’ nằm trong mặt phẳng (α).
Vấn đề 3. Chứng minh ba điểm thẳng hàng: Để chứng ba điểm thẳng hàng, ta có thể chứng minh chúng cùng thuộc hai mặt phẳng riêng biệt.
§2. HAI ĐƯỜNG THẲNG CHÉO NHAU VÀ HAI ĐƯỜNG THẲNG SONG SONG
Vấn đề 1. Tìm giao tuyến hai mặt phẳng: Nếu hai mặt phẳng (α) và (β) có điểm chung là S và lần lượt chứa hai đường thẳng song song d và d’ thì giao tuyến của (α) và (β) là đường thẳng ∆ qua S và song song với d và d’.
[ads]
Vấn đề 2. Tìm thiết điện của hình chóp khi cắt bởi một mặt phẳng: Ta tìm giao tuyến của mặt phẳng đó với các mặt bên của hình chóp. Đoạn nối giữa các giao tuyến cho ta một hình. Hình đó là thiết diện cần tìm.
Vấn đề 3. Chứng minh hai đường thẳng song song:
+ Chứng minh chúng cùng thuộc một mặt phẳng và dùng phương pháp chứng minh hai đường thẳng song song trong hình học phẳng (như tính chất đường trung bình của tam giác, định lí Talét đảo, tính chất song song của hai đường thẳng cùng vuông góc với đường thẳng thứ ba, …).
+ Chứng minh chúng cùng song song với đường thẳng thứ ba.
+ Dùng tính chất: Hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng(nếu có) cũng song song với hai đường thẳng ấy.
+ Dùng định lý về giao tuyến của ba mặt phẳng.
§3. ĐƯỜNG THẲNG SONG SONG VỚI MẶT PHẲNG
Vấn đề 1. Chứng minh đường thẳng song song với mặt phẳng: Để chứng minh đường thẳng d song song với mặt phẳng (α) ta chứng minh d không nằm trong (α) và song song với đường thẳng a chứa trong (α).
Vấn đề 2. Dựng thiết diện song song với một đường thẳng:
+ Cho đường thẳng d song song với mặt phẳng (α). Nếu mặt phẳng (β) chứa d và cắt (α) theo giao tuyến d’ thì d’ song song với d.
+ Thiết diện cắt bởi một mặt phẳng chứa một đường thẳng song song với một đường thẳng cho trước được xác định bằng cách phối hợp hai cách xác định giao tuyến đã biết.
§4. HAI MẶT PHẲNG SONG SONG
Vấn đề. Chứng minh hai mặt phẳng song song:
+ Vận dụng định lí Nếu mặt phẳng (α) chứa hai đường thẳng cắt nhau a, b và a, b cùng song với mặt phẳng (β) thì (α) song song với (β).
+ Ta chứng minh hai mặt phẳng (α) và (β) cùng song song với mặt phẳng thứ ba (γ).
§5. PHÉP CHIẾU SONG SONG
TỔNG HỢP CÁC DẠNG TOÁN CƠ BẢN CỦA HÌNH HỌC 11 CHƯƠNG 2
TRẮC NGHIỆM ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN – QUAN HỆ SONG SONG
MỘT SỐ ĐỀ ÔN KIỂM TRA MỘT TIẾT HÌNH HỌC 11 CHƯƠNG 2
Bài toán đường thẳng và mặt phẳng trong không gian, quan hệ song song – lư sĩ pháp là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán đường thẳng và mặt phẳng trong không gian, quan hệ song song – lư sĩ pháp thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán đường thẳng và mặt phẳng trong không gian, quan hệ song song – lư sĩ pháp, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đường thẳng và mặt phẳng trong không gian, quan hệ song song – lư sĩ pháp, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán đường thẳng và mặt phẳng trong không gian, quan hệ song song – lư sĩ pháp là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: đường thẳng và mặt phẳng trong không gian, quan hệ song song – lư sĩ pháp.