giaibaitoan.com xin giới thiệu đến quý thầy cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên năm học 2023 – 2024 của Sở Giáo dục và Đào tạo thành phố Hải Phòng, được tổ chức vào ngày 05/06/2023. Đề thi năm nay được đánh giá là có độ khó cao, phân loại rõ ràng học sinh, đòi hỏi thí sinh phải có kiến thức vững chắc và kỹ năng giải quyết vấn đề tốt.
Dưới đây là nội dung chi tiết của đề thi:
Cho phương trình: x2 – 2(a + 1)x + a2 – 2a + 1 = 0 (x là ẩn, a là tham số). Chứng minh nếu a là số chính phương thì phương trình đã cho có hai nghiệm cũng là những số chính phương.
Nhận xét: Đây là một bài toán kết hợp kiến thức về phương trình bậc hai và tính chất của số chính phương. Để giải bài toán này, học sinh cần sử dụng công thức nghiệm của phương trình bậc hai, sau đó chứng minh rằng các nghiệm tìm được thỏa mãn điều kiện là số chính phương dựa trên giả thiết a là số chính phương. Bài toán đòi hỏi sự linh hoạt trong việc vận dụng kiến thức và kỹ năng biến đổi đại số.
Cho tam giác nhọn ABC không cân nội tiếp đường tròn tâm O. Vẽ đường kính AT của đường tròn (O) và lấy điểm P trên đoạn thẳng OT (P khác T). Gọi E và F tương ứng là hình chiếu vuông góc của P trên các đường thẳng AC và AB. Gọi H là hình chiếu vuông góc của A trên cạnh BC.
Nhận xét: Bài toán này là một bài toán hình học phức tạp, đòi hỏi học sinh phải có kiến thức vững chắc về các tính chất của đường tròn, tam giác, đường thẳng song song, và các định lý liên quan đến hình chiếu vuông góc. Các câu hỏi a, b, c có tính liên kết chặt chẽ với nhau, đòi hỏi học sinh phải giải quyết từng bước một để tìm ra lời giải cuối cùng. Câu c đặc biệt thách thức, đòi hỏi học sinh phải sử dụng phương pháp tọa độ hoặc các kỹ thuật biến hình để chứng minh tính cố định của điểm.
Cho 8 điểm phân biệt trên một đường tròn. Đánh số các điểm đó một cách ngẫu nhiên bởi các số 1; 2; …; 8 (hai điểm khác nhau được đánh số bởi hai số khác nhau). Mỗi dây cung nối hai điểm bất kỳ được gán với giá trị tuyệt đối của hiệu các số ở hai đầu mút. Chứng minh rằng luôn tìm được bốn dây cung, đôi một không có điểm chung, sao cho tổng của các số gán với bốn dây cung đó bằng 16.
Nhận xét: Đây là một bài toán tổ hợp khá thú vị, đòi hỏi học sinh phải có tư duy logic và khả năng phân tích vấn đề. Để giải bài toán này, học sinh có thể sử dụng nguyên lý Dirichlet (còn gọi là hộp) hoặc các kỹ thuật đếm khác để chứng minh sự tồn tại của bốn dây cung thỏa mãn điều kiện đề bài. Bài toán này không đòi hỏi tính toán phức tạp, mà tập trung vào việc tìm ra một cách chọn các dây cung phù hợp.
Nhìn chung, đề thi tuyển sinh lớp 10 THPT chuyên Hải Phòng năm 2023 – 2024 là một đề thi chất lượng, có tính phân loại cao, và phù hợp với mục tiêu đánh giá năng lực của học sinh chuyên Toán. Đề thi này là một tài liệu tham khảo hữu ích cho các em học sinh đang chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT chuyên.
Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt hải phòng là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt hải phòng thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt hải phòng, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt hải phòng, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt hải phòng là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt hải phòng.