giaibaitoan.com xin giới thiệu đến quý thầy cô giáo và các em học sinh đề thi tuyển sinh lớp 10 chuyên Toán năm học 2023 – 2024 của Sở Giáo dục và Đào tạo thành phố Đà Nẵng, cụ thể là đề thi dành cho thí sinh thi vào trường THPT chuyên Lê Quý Đôn, Đà Nẵng. Đề thi năm nay được đánh giá là có độ khó cao, phân loại rõ ràng học sinh, đòi hỏi thí sinh phải có kiến thức vững chắc và kỹ năng giải quyết vấn đề linh hoạt.
Dưới đây là nội dung chi tiết của đề thi:
Trên cùng một mặt phẳng tọa độ, cho parabol (P): y = x2 và đường thẳng (d): y = kx + 5. Đường thẳng (d) cắt parabol (P) tại hai điểm A và B. Gọi C, D lần lượt là hình chiếu của A, B trên trục Ox.
Nhận xét: Bài toán này kiểm tra kiến thức về phương trình đường thẳng, phương trình parabol, giao điểm của đường thẳng và parabol, cũng như các tính chất hình học cơ bản như hình thang, đường tròn. Câu a là một bài toán tính toán trực tiếp, trong khi câu b đòi hỏi thí sinh phải có tư duy logic và khả năng kết hợp các kiến thức khác nhau để tìm ra lời giải.
Cho tam giác nhọn ABC với AB < AC, nội tiếp đường tròn (O). Các tiếp tuyến của đường tròn (O) tại B và C cắt nhau ở D. Đường tròn đường kính AD cắt đường tròn đường kính OD tại điểm E (khác D). Gọi F là giao điểm của đoạn thẳng OE và đường tròn (O).
Nhận xét: Bài toán này tập trung vào kiến thức về đường tròn, tiếp tuyến, góc nội tiếp, góc tạo bởi tiếp tuyến và dây cung. Việc chứng minh ba điểm thẳng hàng và tính chất tia phân giác đòi hỏi thí sinh phải nắm vững các định lý và tính chất liên quan. Câu b là một bài toán khó, đòi hỏi thí sinh phải có khả năng suy luận và chứng minh một cách chặt chẽ.
Cho tam giác nhọn ABC có AB < AC < BC, đường tròn (O) nội tiếp tam giác ABC tiếp xúc với cạnh AB tại M. Lấy điểm E nằm giữa A và M. Trên cạnh AC, BC lần lượt lấy các điểm D, F sao cho AD = AE và BF = BE. Đường tròn ngoại tiếp tam giác DEF lần lượt cắt AB và BC tại G (khác E) và H (khác F).
Nhận xét: Bài toán này kết hợp kiến thức về đường tròn nội tiếp, đường tròn ngoại tiếp, và định lý Ceva. Việc chứng minh O là tâm đường tròn ngoại tiếp tam giác DEF là một kết quả khá thú vị và đòi hỏi thí sinh phải có tư duy sáng tạo. Việc chứng minh ba đường thẳng đồng quy là một ứng dụng của định lý Ceva, đòi hỏi thí sinh phải xác định được các tỉ số cần thiết.
Nhìn chung, đề thi tuyển sinh lớp 10 chuyên Toán năm 2023 – 2024 của Đà Nẵng là một đề thi chất lượng, có tính phân loại cao. Đề thi không chỉ kiểm tra kiến thức mà còn đánh giá khả năng tư duy, sáng tạo và giải quyết vấn đề của thí sinh. Đây là một nguồn tài liệu tham khảo hữu ích cho các em học sinh đang chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 chuyên.
Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt đà nẵng là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt đà nẵng thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt đà nẵng, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt đà nẵng, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt đà nẵng là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: đề tuyển sinh lớp 10 môn toán (chuyên) năm 2023 – 2024 sở gd&đt đà nẵng.