giaibaitoan.com xin giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 đề thi tuyển sinh lớp 10 chuyên môn Toán năm học 2022 – 2023 của Sở Giáo dục và Đào tạo thành phố Đà Nẵng. Đây là đề thi chính thức dành cho thí sinh thi vào trường THPT chuyên Lê Quý Đôn, được tổ chức vào sáng Chủ Nhật, ngày 12 tháng 06 năm 2022.
Đề thi năm nay được đánh giá là có độ khó cao, phân loại rõ ràng học sinh, đòi hỏi thí sinh phải có kiến thức vững chắc, kỹ năng giải quyết vấn đề linh hoạt và khả năng vận dụng kiến thức vào thực tế tốt. Đề thi bao gồm 3 bài toán, tập trung vào các chủ đề quen thuộc nhưng được biến đổi một cách tinh tế, đòi hỏi thí sinh phải có tư duy sáng tạo để tìm ra lời giải.
Dưới đây là nội dung chi tiết của từng bài toán:
Cho phương trình x2 – 2x + k2 – 3k – 9 = 0 với k là tham số. Khi phương trình đã cho có hai nghiệm x1 và x2, hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức Q.
Nhận xét: Bài toán này kiểm tra kiến thức về điều kiện có nghiệm của phương trình bậc hai, công thức nghiệm và các biểu thức đối xứng. Để giải bài toán này, học sinh cần sử dụng các công thức liên hệ giữa nghiệm và hệ số của phương trình bậc hai, kết hợp với các kỹ năng biến đổi đại số để tìm ra giá trị lớn nhất và nhỏ nhất của biểu thức Q.
Cho đường tròn (O) bán kính R và điểm A nằm trên đường tròn. Đường tròn (A;R) cắt đường tròn (O) tại hai điểm B và C. Gọi M là trung điểm của AB, tia MO cắt (O) tại điểm D. Tia BC cắt AD tại E và cắt (O) tại điểm thứ hai là F. Tính độ dài đoạn thẳng DE và diện tích tứ giác ACFE theo R.
Nhận xét: Bài toán này đòi hỏi học sinh phải nắm vững kiến thức về các tính chất của đường tròn, mối quan hệ giữa đường thẳng và đường tròn, các tam giác đồng dạng và các công thức tính diện tích. Bài toán này có tính chất hình học cao, đòi hỏi học sinh phải có khả năng quan sát, phân tích và vẽ hình chính xác để tìm ra lời giải.
Cho tam giác ABC nhọn có AB < AC, trực tâm H và nội tiếp đường tròn (O). Gọi M là trung điểm của BC và K là hình chiếu của H trên AM. Tia AM cắt đường tròn ngoại tiếp tam giác BKC tại điểm thứ hai là N. Chứng minh rằng tứ giác ABNC là hình bình hành.
Nhận xét: Bài toán này kiểm tra kiến thức về các tính chất của tam giác, đường tròn ngoại tiếp, trực tâm và các điểm đặc biệt của tam giác. Để giải bài toán này, học sinh cần sử dụng các tính chất của hình học, kết hợp với các kỹ năng chứng minh hình học để chứng minh tứ giác ABNC là hình bình hành.
Việc phân tích kỹ lưỡng đề thi này sẽ giúp học sinh hiểu rõ hơn về cấu trúc đề thi, các dạng bài thường gặp và các kiến thức cần thiết để đạt kết quả tốt trong kỳ thi tuyển sinh lớp 10 chuyên. giaibaitoan.com sẽ tiếp tục cập nhật và chia sẻ các tài liệu học tập, đề thi và phương pháp giải toán để hỗ trợ quý thầy cô giáo và các em học sinh trong quá trình ôn luyện.
Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt tp đà nẵng là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt tp đà nẵng thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt tp đà nẵng, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt tp đà nẵng, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt tp đà nẵng là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt tp đà nẵng.