giaibaitoan.com xin giới thiệu đến quý thầy cô giáo và các em học sinh đề thi tuyển sinh lớp 10 chuyên Toán năm học 2023 – 2024 của trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa. Kỳ thi chính thức được tổ chức vào ngày 27 tháng 05 năm 2023. Đề thi năm nay được đánh giá là có độ khó cao, phân loại rõ ràng học sinh, đòi hỏi thí sinh phải có kiến thức vững chắc và kỹ năng giải quyết vấn đề linh hoạt.
Dưới đây là trích dẫn nội dung chi tiết của đề thi:
-
Bài 1: Xác định số nguyên dương n lớn nhất sao cho với mọi số nguyên tố p > 7 thì p6 − 1 chia hết cho n.
Nhận xét: Đây là bài toán về tính chia hết và sử dụng kiến thức về số nguyên tố. Để giải bài này, học sinh cần nắm vững các tính chất của phép chia hết, đặc biệt là các đồng dư thức và định lý Fermat nhỏ. Việc xét các trường hợp cụ thể với các số nguyên tố lớn hơn 7 sẽ giúp tìm ra ước chung lớn nhất của các biểu thức p6 − 1.
-
Bài 2: Cho tam giác nhọn ABC (AB < AC) có các đường cao AD, BE, CF đồng quy tại điểm H. Gọi K là trung điểm của đoạn thẳng AH.
- Chứng minh tứ giác DEKF nội tiếp đường tròn, gọi đường tròn đó là (S).
- Gọi P, Q lần lượt là trung điểm của các đoạn thẳng EF, BC. Chứng minh AD là tiếp tuyến của đường tròn ngoại tiếp tam giác HPQ.
- Gọi M, N lần lượt là giao điểm của (S) với các đoạn thẳng BH, CH. Tiếp tuyến tại D của đường tròn (S) cắt MN tại T. Gọi X, Y là các giao điểm của đường tròn (S) với đường tròn ngoại tiếp tam giác BHC. Chứng minh các điểm T, X, Y thẳng hàng.
Nhận xét: Bài toán này tập trung vào kiến thức về đường tròn nội tiếp, đường tròn ngoại tiếp, các tính chất của tam giác và đường cao. Để giải quyết bài toán, học sinh cần vận dụng linh hoạt các định lý về góc nội tiếp, góc tạo bởi tiếp tuyến và dây cung, cũng như các tính chất đối xứng trong tam giác. Phần 3 của bài toán đòi hỏi sự kết hợp của nhiều kiến thức và kỹ năng chứng minh hình học nâng cao.
-
Bài 3: Cho tập hợp X = {1; 2; …; 120} gồm 120 số nguyên dương đầu tiên, trong đó có 60 số được viết bằng màu đỏ và 60 số còn lại được viết bằng màu xanh. Chứng minh rằng tồn tại 40 số nguyên dương liên tiếp của tập X, trong đó có 20 số được viết bằng màu đỏ và 20 số được viết bằng màu xanh.
Nhận xét: Đây là bài toán về nguyên lý Dirichlet (pigeonhole principle) kết hợp với tính chất của dãy số. Học sinh cần hiểu rõ nguyên lý Dirichlet và cách áp dụng nó vào các bài toán đếm. Việc xét các trường hợp và sử dụng các lập luận logic sẽ giúp chứng minh sự tồn tại của dãy số thỏa mãn điều kiện đề bài.
Đánh giá chung: Đề thi vào lớp 10 chuyên Toán trường THPT chuyên Lam Sơn năm 2023 – 2024 có cấu trúc khá quen thuộc với các đề thi tuyển sinh vào lớp 10 chuyên. Tuy nhiên, độ khó của các bài toán được nâng cao, đòi hỏi học sinh phải có nền tảng kiến thức vững chắc và khả năng tư duy logic tốt. Đề thi không chỉ kiểm tra kiến thức mà còn đánh giá khả năng vận dụng kiến thức vào giải quyết các vấn đề thực tế.
Giải bài toán đề thi vào 10 môn toán (chuyên) năm 2023 – 2024 trường chuyên lam sơn – thanh hóa: Phương Pháp, Mẹo Học Hiệu Quả và Ví Dụ Chi Tiết
Bài toán đề thi vào 10 môn toán (chuyên) năm 2023 – 2024 trường chuyên lam sơn – thanh hóa là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
1. Tầm Quan Trọng Của Việc Giải Bài Toán đề thi vào 10 môn toán (chuyên) năm 2023 – 2024 trường chuyên lam sơn – thanh hóa
Bài toán đề thi vào 10 môn toán (chuyên) năm 2023 – 2024 trường chuyên lam sơn – thanh hóa thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
- Rèn luyện tư duy logic: Việc giải các bài toán thuộc dạng này giúp bạn phát triển khả năng tư duy phân tích, nhận biết mối quan hệ giữa các yếu tố trong bài toán.
- Củng cố kiến thức: Qua quá trình luyện tập, bạn sẽ hiểu sâu hơn về các công thức, định lý, và phương pháp áp dụng.
- Chuẩn bị cho kỳ thi: Việc làm quen với dạng bài này sẽ giúp bạn tự tin hơn khi bước vào phòng thi.
2. Phương Pháp Giải Bài Toán đề thi vào 10 môn toán (chuyên) năm 2023 – 2024 trường chuyên lam sơn – thanh hóa
Để giải hiệu quả bài toán đề thi vào 10 môn toán (chuyên) năm 2023 – 2024 trường chuyên lam sơn – thanh hóa, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
- Đọc kỹ đề bài để nắm bắt yêu cầu chính xác.
- Xác định các yếu tố đã cho và cần tìm.
- Phân tích mối liên hệ giữa các yếu tố.
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
- Phương pháp trực tiếp: Sử dụng các công thức hoặc định lý có sẵn để giải bài.
- Phương pháp gián tiếp: Biến đổi bài toán về một dạng quen thuộc hoặc dễ xử lý hơn.
- Sử dụng đồ thị: Trong trường hợp bài toán liên quan đến hàm số hoặc biểu đồ.
Bước 3: Triển Khai Lời Giải
- Áp dụng công thức và phương pháp đã chọn.
- Trình bày các bước giải rõ ràng, logic.
- Kiểm tra lại từng bước để đảm bảo không có sai sót.
Bước 4: Kiểm Tra Kết Quả
- So sánh kết quả với yêu cầu đề bài.
- Đánh giá xem lời giải có đáp ứng đầy đủ yêu cầu chưa.
3. Những Mẹo Học Hiệu Quả Khi Giải Bài Toán đề thi vào 10 môn toán (chuyên) năm 2023 – 2024 trường chuyên lam sơn – thanh hóa
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
4. Ví Dụ Chi Tiết Về Bài Toán đề thi vào 10 môn toán (chuyên) năm 2023 – 2024 trường chuyên lam sơn – thanh hóa
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
- 1. Phân tích đề bài: [Chi tiết phân tích các yếu tố]
- 2. Sử dụng phương pháp: [Phương pháp áp dụng và lý do chọn phương pháp này]
- 3. Triển khai từng bước:
- Bước 1: [Mô tả bước đầu tiên]
- Bước 2: [Mô tả bước tiếp theo]
4. Kết quả cuối cùng: [Đáp án và kiểm tra lại đáp án].
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
- Đề bài: “Chứng minh rằng [nội dung đề bài nâng cao].”
- Gợi ý lời giải: [Cách tiếp cận và các bước triển khai chi tiết].
5. Tài Liệu Hỗ Trợ Học Tập
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề thi vào 10 môn toán (chuyên) năm 2023 – 2024 trường chuyên lam sơn – thanh hóa, dưới đây là một số nguồn hữu ích:
- Sách tham khảo: Các sách chuyên đề về toán học.
- Website học toán: Những trang web uy tín cung cấp bài tập và lời giải chi tiết.
- Video bài giảng: Các kênh YouTube hoặc khóa học trực tuyến giúp bạn hiểu sâu hơn về phương pháp giải.
6. Lời Khuyên Từ Chuyên Gia
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
7. Kết Luận
Bài toán đề thi vào 10 môn toán (chuyên) năm 2023 – 2024 trường chuyên lam sơn – thanh hóa là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: đề thi vào 10 môn toán (chuyên) năm 2023 – 2024 trường chuyên lam sơn – thanh hóa.