Thứ Năm ngày 19 tháng 12 năm 2019, trường THPT chuyên Lê Hồng Phong – Nam Định tổ chức kỳ thi khảo sát chất lượng học kỳ 1 môn Toán 12 năm học 2019 – 2020.
Đề thi HK1 Toán 12 năm 2019 – 2020 trường chuyên Lê Hồng Phong – Nam Định gồm 4 mã đề: 184, 275, 368, 491; đề gồm 5 trang với 50 câu hỏi và bài tập hình thức trắc nghiệm, học sinh có 90 phút để làm bài thi, đề thi có đáp án.
Trích dẫn đề thi HK1 Toán 12 năm 2019 – 2020 trường chuyên Lê Hồng Phong – Nam Định:
+ Trong không gian Oxyz, cho mặt cầu (S): x^2 + y^2 + z^2 = 1. Gọi M là điểm nằm trên mặt phẳng (P): 2x + y − 2z + 6 = 0. Từ M kẻ ba tiếp tuyến MA, MB, MC đến mặt cầu (S) (với A, B, C là các tiếp điểm). Khi M di động trên mặt phẳng (P), tìm giá trị nhỏ nhất của bán kính đường tròn ngoại tiếp tam giác ABC.
+ Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + 2y + z − 6 = 0. Chọn khẳng định sai trong các khẳng định sau?
A. Mặt phẳng (P) song song với mặt phẳng (Q): x + 2y + z + 5 = 0. B. Mặt phẳng (P) có vectơ pháp tuyến là n = (1;2;1).
C. Mặt phẳng (P) tiếp xúc với mặt cầu tâm I (1;7;3) bán kính bằng √6. D. Mặt phẳng (P) đi qua điểm A (3;4;−5).
[ads]
+ Cho phương trình 3^(1 + x) + 3^(1 − x) = 10. Mệnh đề nào sau đây là mệnh đề đúng?
A. Phương trình có hai nghiệm cùng âm. B. Phương trình có hai nghiệm trái dấu.
C. Phương trình vô nghiệm. D. Phương trình có hai nghiệm dương.
+ Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao R√3 và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng?
+ Biết α là một số thực sao cho bất phương trình 9^αx + (αx)^2 ≥ 18x + 1 đúng với mọi số thực x, mệnh đề nào dưới đây đúng?
Bài toán đề thi hk1 toán 12 năm 2019 – 2020 trường chuyên lê hồng phong – nam định là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán đề thi hk1 toán 12 năm 2019 – 2020 trường chuyên lê hồng phong – nam định thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán đề thi hk1 toán 12 năm 2019 – 2020 trường chuyên lê hồng phong – nam định, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề thi hk1 toán 12 năm 2019 – 2020 trường chuyên lê hồng phong – nam định, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán đề thi hk1 toán 12 năm 2019 – 2020 trường chuyên lê hồng phong – nam định là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: đề thi hk1 toán 12 năm 2019 – 2020 trường chuyên lê hồng phong – nam định.