Logo Header
  1. Môn Toán
  2. đề kscl toán 11 lần 2 năm 2019 – 2020 trường nguyễn viết xuân – vĩnh phúc

đề kscl toán 11 lần 2 năm 2019 – 2020 trường nguyễn viết xuân – vĩnh phúc

Thứ … ngày … tháng 01 năm 2020, trường THPT Nguyễn Viết Xuân, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 11 lần thứ 2 năm học 2019 – 2020, kỳ thi được diễn ra vào giai đoạn đầu học kỳ 2.

Đề KSCL Toán 11 lần 2 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc mã đề 101 gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án.

Trích dẫn đề KSCL Toán 11 lần 2 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc:

+ Một đoàn tình nguyện đến một trường tiểu học miền núi để trao tặng 20 suất quà cho 10 em học sinh nghèo học giỏi. Trong 20 suất quà đó gồm 7 chiếc áo mùa đông, 9 thùng sữa tươi và 4 chiếc cặp sách. Tất cả các suất quà đều có giá trị tương đương nhau. Biết rằng mỗi em được nhận 2 suất quà khác loại (ví dụ: 1 chiếc áo và 1 thùng sữa tươi). Trong số các em được nhận quà có hai em Việt và Nam. Tính xác suất để hai em Việt và Nam đó nhận được suất quà giống nhau.

+ Một thí sinh tham gia kì thi THPT Quốc gia Trong bài thi môn Toán bạn đó làm được chắc chắn đúng 40 câu. Trong 10 câu còn lại chỉ có 3 câu bạn loại trừ được mỗi câu một đáp án chắc chắn sai. Do không còn đủ thời gian nên bạn bắt buộc phải khoanh bừa các câu còn lại. Hỏi xác suất bạn đó được 9 điểm là bao nhiêu?

[ads]

+ Cho hai đường thẳng a và b. Điều kiện nào sau đây đủ kết luận a và b chéo nhau?

A. a và b không có điểm chung. B. a và b không cùng nằm trên bất kì mặt phẳng nào.

C. a và b là hai cạnh của một hình tứ diện. D. a và b nằm trên hai mặt phẳng phân biệt.

+ Cho tứ giác ABCD có AC và BD giao nhau tại O và một điểm S không thuộc mặt phẳng ABCD. Trên đoạn SC lấy một điểm M không trùng với S và C. Giao điểm của đường thẳng SD với mặt phẳng ABM là:

A. giao điểm của SD và AB. B. giao điểm của SD và AM. C. giao điểm của SD và BK (với K = SO giao AM). D. giao điểm của SD và MK (với K = SO giao AM).

+ Cho hàm số f(x). Xét các mệnh đề sau:

1. Hàm số đã cho xác định trên D = R. 2. Đồ thị hàm số đã cho có trục đối xứng.

3. Hàm số đã cho là hàm số chẵn. 4. Đồ thị hàm số đã cho có tâm đối xứng.

5. Hàm số đã cho là hàm số lẻ. 6. Hàm số đã cho là hàm số không chẵn không lẻ.

Số phát biểu đúng trong sáu phát biểu trên là?

images-post/de-kscl-toan-11-lan-2-nam-2019-2020-truong-nguyen-viet-xuan-vinh-phuc-1.jpgimages-post/de-kscl-toan-11-lan-2-nam-2019-2020-truong-nguyen-viet-xuan-vinh-phuc-2.jpgimages-post/de-kscl-toan-11-lan-2-nam-2019-2020-truong-nguyen-viet-xuan-vinh-phuc-3.jpgimages-post/de-kscl-toan-11-lan-2-nam-2019-2020-truong-nguyen-viet-xuan-vinh-phuc-4.jpgimages-post/de-kscl-toan-11-lan-2-nam-2019-2020-truong-nguyen-viet-xuan-vinh-phuc-5.jpgimages-post/de-kscl-toan-11-lan-2-nam-2019-2020-truong-nguyen-viet-xuan-vinh-phuc-6.jpgimages-post/de-kscl-toan-11-lan-2-nam-2019-2020-truong-nguyen-viet-xuan-vinh-phuc-7.jpg

File đề kscl toán 11 lần 2 năm 2019 – 2020 trường nguyễn viết xuân – vĩnh phúc PDF Chi Tiết

Giải bài toán đề kscl toán 11 lần 2 năm 2019 – 2020 trường nguyễn viết xuân – vĩnh phúc: Phương Pháp, Mẹo Học Hiệu Quả và Ví Dụ Chi Tiết

Bài toán đề kscl toán 11 lần 2 năm 2019 – 2020 trường nguyễn viết xuân – vĩnh phúc là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.

1. Tầm Quan Trọng Của Việc Giải Bài Toán đề kscl toán 11 lần 2 năm 2019 – 2020 trường nguyễn viết xuân – vĩnh phúc

Bài toán đề kscl toán 11 lần 2 năm 2019 – 2020 trường nguyễn viết xuân – vĩnh phúc thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.

  • Rèn luyện tư duy logic: Việc giải các bài toán thuộc dạng này giúp bạn phát triển khả năng tư duy phân tích, nhận biết mối quan hệ giữa các yếu tố trong bài toán.
  • Củng cố kiến thức: Qua quá trình luyện tập, bạn sẽ hiểu sâu hơn về các công thức, định lý, và phương pháp áp dụng.
  • Chuẩn bị cho kỳ thi: Việc làm quen với dạng bài này sẽ giúp bạn tự tin hơn khi bước vào phòng thi.

2. Phương Pháp Giải Bài Toán đề kscl toán 11 lần 2 năm 2019 – 2020 trường nguyễn viết xuân – vĩnh phúc

Để giải hiệu quả bài toán đề kscl toán 11 lần 2 năm 2019 – 2020 trường nguyễn viết xuân – vĩnh phúc, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:

Bước 1: Hiểu Đề Bài

  • Đọc kỹ đề bài để nắm bắt yêu cầu chính xác.
  • Xác định các yếu tố đã cho và cần tìm.
  • Phân tích mối liên hệ giữa các yếu tố.

Bước 2: Lựa Chọn Phương Pháp Giải

Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:

  • Phương pháp trực tiếp: Sử dụng các công thức hoặc định lý có sẵn để giải bài.
  • Phương pháp gián tiếp: Biến đổi bài toán về một dạng quen thuộc hoặc dễ xử lý hơn.
  • Sử dụng đồ thị: Trong trường hợp bài toán liên quan đến hàm số hoặc biểu đồ.

Bước 3: Triển Khai Lời Giải

  • Áp dụng công thức và phương pháp đã chọn.
  • Trình bày các bước giải rõ ràng, logic.
  • Kiểm tra lại từng bước để đảm bảo không có sai sót.

Bước 4: Kiểm Tra Kết Quả

  • So sánh kết quả với yêu cầu đề bài.
  • Đánh giá xem lời giải có đáp ứng đầy đủ yêu cầu chưa.

3. Những Mẹo Học Hiệu Quả Khi Giải Bài Toán đề kscl toán 11 lần 2 năm 2019 – 2020 trường nguyễn viết xuân – vĩnh phúc

Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:

Mẹo 1: Nắm Vững Kiến Thức Cơ Bản

Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.

Mẹo 2: Luyện Tập Thường Xuyên

Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.

Mẹo 3: Phân Tích Sai Lầm

Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.

Mẹo 4: Sử Dụng Tài Liệu Tham Khảo

Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.

4. Ví Dụ Chi Tiết Về Bài Toán đề kscl toán 11 lần 2 năm 2019 – 2020 trường nguyễn viết xuân – vĩnh phúc

Ví Dụ 1: Đề Bài Cụ Thể

Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”

Lời Giải:

  • 1. Phân tích đề bài: [Chi tiết phân tích các yếu tố]
  • 2. Sử dụng phương pháp: [Phương pháp áp dụng và lý do chọn phương pháp này]
  • 3. Triển khai từng bước:
    • Bước 1: [Mô tả bước đầu tiên]
    • Bước 2: [Mô tả bước tiếp theo]

4. Kết quả cuối cùng: [Đáp án và kiểm tra lại đáp án].

Ví Dụ 2: Bài Tập Nâng Cao

Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:

  • Đề bài: “Chứng minh rằng [nội dung đề bài nâng cao].”
  • Gợi ý lời giải: [Cách tiếp cận và các bước triển khai chi tiết].

5. Tài Liệu Hỗ Trợ Học Tập

Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề kscl toán 11 lần 2 năm 2019 – 2020 trường nguyễn viết xuân – vĩnh phúc, dưới đây là một số nguồn hữu ích:

  • Sách tham khảo: Các sách chuyên đề về toán học.
  • Website học toán: Những trang web uy tín cung cấp bài tập và lời giải chi tiết.
  • Video bài giảng: Các kênh YouTube hoặc khóa học trực tuyến giúp bạn hiểu sâu hơn về phương pháp giải.

6. Lời Khuyên Từ Chuyên Gia

Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.

7. Kết Luận

Bài toán đề kscl toán 11 lần 2 năm 2019 – 2020 trường nguyễn viết xuân – vĩnh phúc là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.

Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!

>> Xem thêm đáp án chi tiết về: đề kscl toán 11 lần 2 năm 2019 – 2020 trường nguyễn viết xuân – vĩnh phúc.