Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Tường – Vĩnh Phúc gồm 4 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, có đáp án và lời giải chi tiết.
Trích dẫn đề thi học kỳ 1 Toán 9:
Cho đường tròn (O;R) đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến (d) và (d’). Một đường thẳng qua O cắt đường thẳng (d) ở M và (d’) ở P. Từ O kẻ tia Ox vuông góc với MP và cắt (d’) ở N.
a) Chứng minh OM = OP và tam giác NMP cân
b) Chứng minh MN là tiếp tuyến của (O)
c) Chứng minh AM.BN = R^2
d) Tìm vị trí của M để diện tích tứ giác AMNB là nhỏ nhất
Giải:
a) Xét ΔAMO và ΔBPO có: góc MAO = PBO = 90 độ (Tính chất tiếp tuyến)
OA = OB (bán kính)
Góc AOM = BOP (2 góc đối đỉnh)
Do đó: ΔAMO = ΔBPO (g.c.g), suy ra OM = OP (2 cạnh tương ứng)
Xét ΔMNP có: OM = OP (chứng minh trên)
NO ⊥ MP (theo giả thiết)
Suy ra ON là đường trung tuyến, đồng thời là đường cao của tam giác MNP Vậy tam giác MNP cân tại N
Gọi I là hình chiếu của điểm O trên cạnh MN vuông góc OI MN tại I
[ads]
b) Vì tam giác MNP cân tại N nên góc OMI = OPB (2 góc đáy)
Xét tam giác OMI và tam giác OPB có:
Góc OIM = OBP = 90
OM = OP (chứng minh trên)
Góc OMI OPB (chứng minh trên)
Do đó: ΔOMI = ΔOPB (cạnh huyền – góc nhọn)
Suy ra OI = OB = R
Vì OI ⊥ MN tại I và OI = OB = R nên MN là tiếp tuyến của (O;R) tại I
c) Xét ΔAMO và ΔBON có: góc AMO = BON (cùng phụ với góc AOM)
Góc MAO = OBN = 90 (Tính chất tiếp tuyến)
Do đó: ΔAMO đồng dạng với ΔBON (g.g)
Suy ra AM/BO = AO/BN
Suy ra AM.BN = AO.BO = R^2 ( Vì OA=OB=R)
d) Ta có: MA ⊥ AB (Tính chất tiếp tuyến)
NB ⊥ AB (Tính chất tiếp tuyến)
Do đó: MA // NB nên AMNB là hình thang vuông
Vì AMNB là hình thang vuông nên ta có: S AMNB = (AM + NB).AB/2
Mặt khác: AM = MI (Tính chất 2 tiếp tuyến cắt nhau)
BN = NI (Tính chất 2 tiếp tuyến cắt nhau)
Do đó: S AMNB = (MI + NI).AB/2 = MN.AB/2
Mà AB = 2R cố định nên AMNB S nhỏ nhất khi MN nhỏ nhất ⇔ MN // AB hay AM = R. Khi đó S AMNB = 2R^2
Vậy để diện tích tứ giác AMNB nhỏ nhất thì MN//AB và AM = R
Bài toán đề kiểm tra học kỳ 1 toán 9 năm học 2017 – 2018 phòng gd và đt vĩnh tường – vĩnh phúc là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán đề kiểm tra học kỳ 1 toán 9 năm học 2017 – 2018 phòng gd và đt vĩnh tường – vĩnh phúc thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán đề kiểm tra học kỳ 1 toán 9 năm học 2017 – 2018 phòng gd và đt vĩnh tường – vĩnh phúc, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề kiểm tra học kỳ 1 toán 9 năm học 2017 – 2018 phòng gd và đt vĩnh tường – vĩnh phúc, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán đề kiểm tra học kỳ 1 toán 9 năm học 2017 – 2018 phòng gd và đt vĩnh tường – vĩnh phúc là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: đề kiểm tra học kỳ 1 toán 9 năm học 2017 – 2018 phòng gd và đt vĩnh tường – vĩnh phúc.