Thứ Năm ngày 09 tháng 05 năm 2019, phòng Giáo dục và Đào tạo UBND quận Hoàn Kiếm, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2018 – 2019, kỳ thi nhằm mục đích kiểm tra năng lực học tập môn Toán của học sinh lớp 9 trước khi các em bước vào kỳ thi Toán tuyển sinh vào lớp 10 THPT năm học 2019 – 2020.
Đề khảo sát Toán 9 năm 2018 – 2019 phòng GD&ĐT Hoàn Kiếm – Hà Nội được biên soạn bám sát cấu trúc đề thi tuyển sinh vào lớp 10 THPT môn Toán của sở Giáo dục và Đào tạo Hà Nội những năm gần đây, đề gồm 1 trang với 5 bài toán tự luận, học sinh có 120 phút để hoàn thành bài thi.
Trích dẫn đề khảo sát Toán 9 năm 2018 – 2019 phòng GD&ĐT Hoàn Kiếm – Hà Nội:
+ Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ô tô và một xe máy cùng khởi hành từ A để đi đến B. Biết rằng quãng đường AB dài 60 km và vận tốc của mỗi xe không đổi trên toàn bộ quãng đường. Do vận tốc xe ô tô lớn hơn vận tốc xe máy là 15 km/giờ nên ô tô đến B sớm hơn xe máy là 40 phút. Tìm vận tốc của mỗi xe.
[ads]
+ Cho parabol (P): y = 1/2.x^2 và đường thẳng (d): y = 2mx + 4 trong mặt phẳng tọa độ Oxy.
a) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt với mọi giá trị của m.
b) Gọi x1, x2 là hoành độ các giao điểm của (d) và (P). Tìm số dương m để |x1| + 2|x2| = 8.
+ Cho tam giác ABC nhọn, nội tiếp đường tròn (O). Ba đường cao AD, BE, CF của tam giác ABC cùng đi qua trực tâm H.
1) Chứng minh tứ giác BCEF là tứ giác nội tiếp.
2) Chứng minh HA.HD = HB.HE = HC.HF.
3) Đường tròn ngoại tiếp tam giác DEF cắt cạnh BC tại giao điểm thứ hai là I. Chứng minh DH là tia phân giác của góc EDF và I là trung điểm của BC.
4) Hai tia BE, CF cắt (O) tại các giao điểm thứ hai lần lượt là M và N. Chứng minh nếu MN/OI = 2√2 thì MN là đường kính của (O).
Bài toán đề khảo sát toán 9 năm 2018 – 2019 phòng gd&đt hoàn kiếm – hà nội là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán đề khảo sát toán 9 năm 2018 – 2019 phòng gd&đt hoàn kiếm – hà nội thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán đề khảo sát toán 9 năm 2018 – 2019 phòng gd&đt hoàn kiếm – hà nội, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề khảo sát toán 9 năm 2018 – 2019 phòng gd&đt hoàn kiếm – hà nội, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán đề khảo sát toán 9 năm 2018 – 2019 phòng gd&đt hoàn kiếm – hà nội là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: đề khảo sát toán 9 năm 2018 – 2019 phòng gd&đt hoàn kiếm – hà nội.