giaibaitoan.com xin giới thiệu đến quý thầy cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 THPT năm học 2023 – 2024 do Sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức. Đề thi năm nay được đánh giá là có độ khó cao, đòi hỏi học sinh phải có kiến thức vững chắc, kỹ năng giải quyết vấn đề linh hoạt và khả năng tư duy sáng tạo.
Dưới đây là nội dung chi tiết của đề thi:
Cho n là số nguyên dương lớn hơn 1. Kí hiệu G(n) là ước nguyên tố lớn nhất của n.
Nhận xét: Bài toán này tập trung vào kiến thức về ước số, số nguyên tố và lý thuyết số cơ bản. Câu a yêu cầu học sinh vận dụng tính chất chia hết và lũy thừa của 2 để chứng minh. Câu b đòi hỏi sự hiểu biết sâu sắc về khái niệm số nguyên tố xa lạ và ứng dụng của định lý nhỏ Fermat (thông qua ordp2).
Cho tam giác ABC nhọn và cân tại đỉnh A. Gọi D và E lần lượt là trung điểm của CB và CA, M là trung điểm của DE. Đường tròn ngoại tiếp tam giác AEM cắt cạnh AB tại điểm N. Tiếp tuyến tại M và N của đường tròn ngoại tiếp tam giác AEM cắt nhau tại điểm P.
Nhận xét: Bài toán hình học này đòi hỏi học sinh có khả năng vẽ hình chính xác, vận dụng các định lý về đường tròn ngoại tiếp, tiếp tuyến và các tính chất của tam giác cân. Việc sử dụng phương pháp tọa độ hoặc biến đổi hình học có thể hỗ trợ giải quyết bài toán một cách hiệu quả.
Cho số nguyên dương n > 1, số nguyên dương k được gọi là n-good nếu với mọi cách tô màu mỗi số nguyên dương 1; 2; …; k bởi một trong hai màu xanh hoặc đỏ thì ta luôn chọn được n số cùng màu (không nhất thiết phân biệt) sao cho tổng của n số này cũng nằm trong tập hợp {1; 2; …; k} và cùng màu với n số vừa chọn.
Nhận xét: Bài toán tổ hợp này mang tính chất khám phá và đòi hỏi học sinh phải có tư duy logic cao. Việc phân tích các trường hợp tô màu và sử dụng nguyên lý Dirichlet có thể giúp tìm ra lời giải. Câu b có độ khó cao hơn và yêu cầu học sinh phải có khả năng tổng quát hóa và đưa ra các đánh giá chính xác.
Đề thi chọn học sinh giỏi Toán 12 THPT tỉnh Vĩnh Phúc năm 2023 – 2024 là một tài liệu tham khảo hữu ích cho các em học sinh đang luyện thi học sinh giỏi. Việc giải chi tiết đề thi này sẽ giúp các em củng cố kiến thức, rèn luyện kỹ năng và nâng cao khả năng giải quyết các bài toán khó.
Bài toán đề học sinh giỏi toán 12 chuyên năm 2023 – 2024 sở gd&đt vĩnh phúc là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán đề học sinh giỏi toán 12 chuyên năm 2023 – 2024 sở gd&đt vĩnh phúc thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán đề học sinh giỏi toán 12 chuyên năm 2023 – 2024 sở gd&đt vĩnh phúc, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề học sinh giỏi toán 12 chuyên năm 2023 – 2024 sở gd&đt vĩnh phúc, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán đề học sinh giỏi toán 12 chuyên năm 2023 – 2024 sở gd&đt vĩnh phúc là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: đề học sinh giỏi toán 12 chuyên năm 2023 – 2024 sở gd&đt vĩnh phúc.