Logo Header
  1. Môn Toán
  2. đề chọn đội tuyển thi hsg qg môn toán năm 2023 – 2024 sở gd&đt lạng sơn

đề chọn đội tuyển thi hsg qg môn toán năm 2023 – 2024 sở gd&đt lạng sơn

giaibaitoan.com xin giới thiệu đến quý thầy cô giáo và các em học sinh bộ đề thi chọn đội tuyển học sinh giỏi Quốc gia môn Toán năm học 2023 – 2024 do Sở Giáo dục và Đào tạo tỉnh Lạng Sơn tổ chức. Đề thi năm nay được đánh giá là có độ khó cao, đòi hỏi thí sinh phải có kiến thức vững chắc, kỹ năng giải quyết vấn đề linh hoạt và khả năng tư duy sáng tạo.

Dưới đây là nội dung chi tiết của đề thi:

  1. Bài 1: Xét các đa thức P(x) với hệ số thực thỏa mãn tính chất: "Với bất kì hai số thực x, y luôn có |y2 – P(x)| ≤ 2|x| khi và chỉ khi |x2 – P(y)| ≤ 2|y|". Gọi S là tập tất cả các đa thức thỏa mãn điều kiện trên.
    • a) Chứng minh rằng họ đa thức P(x) = C với C > 0 và đa thức Q(x) = x2 + 1 cùng thuộc vào tập S.
    • b) Giả sử rằng P(x) thuộc S và P(0) ≥ 0. Chứng minh rằng P(x) là hàm số chẵn.
    Nhận xét: Bài toán này tập trung vào việc khảo sát các đa thức thỏa mãn một điều kiện đối xứng đặc biệt. Phần a yêu cầu thí sinh kiểm tra hai đa thức cụ thể, đòi hỏi sự hiểu biết về các tính chất của đa thức và bất đẳng thức. Phần b là phần khó hơn, đòi hỏi thí sinh phải sử dụng các kỹ năng phân tích và chứng minh hàm số, kết hợp với điều kiện đối xứng đã cho.
  2. Bài 2: Cho tam giác ABC có đường tròn nội tiếp tâm I tiếp xúc với BC, CA, AB lần lượt tại D, E, F. Giả sử G, L, K lần lượt là giao điểm của các đường thẳng EF, FD, DE với BC, CA, AB tương ứng.
    • a) Chứng minh rằng G, L, K thẳng hàng.
    • b) Lấy các điểm P, Q lần lượt đối xứng với D qua B, C tương ứng. Đường tròn bàng tiếp tâm J ứng với đỉnh A của tam giác ABC tiếp xúc với BC tại N; gọi R là điểm đối xứng với N qua J. Chứng minh đường tròn (PQR) tiếp xúc với đường tròn (I).
    Nhận xét: Bài toán này thuộc về hình học phẳng, đòi hỏi thí sinh phải nắm vững các định lý về đường tròn nội tiếp, đường tròn bàng tiếp, và các tính chất của phép đối xứng. Phần a là một bài toán về đường thẳng, có thể giải quyết bằng định lý Ceva hoặc Menelaus. Phần b phức tạp hơn, đòi hỏi sự kết hợp của nhiều kiến thức và kỹ năng, bao gồm cả việc sử dụng tính chất của phép biến hình.
  3. Bài 3: Một trường có 2007 nam và 2007 nữ. Mỗi học sinh tham gia không quá 100 câu lạc bộ; biết rằng bất kì hai bạn khác giới (1 nam và 1 nữ) tham gia ít nhất cùng một câu lạc bộ. Chứng minh rằng tồn tại một câu lạc bộ bao gồm ít nhất 11 nam và 11 nữ. Nhận xét: Đây là một bài toán tổ hợp, có tính chất ứng dụng cao. Bài toán yêu cầu thí sinh phải sử dụng các kỹ năng đếm, ước lượng và chứng minh sự tồn tại. Để giải quyết bài toán này, có thể sử dụng nguyên lý Dirichlet hoặc các kỹ thuật phân tích khác.

Đánh giá chung:

Đề thi chọn đội tuyển tỉnh Lạng Sơn năm 2023 – 2024 có cấu trúc khá cân đối, bao gồm các bài toán thuộc nhiều lĩnh vực khác nhau của toán học (đại số, hình học, tổ hợp). Các bài toán đều có độ khó cao, đòi hỏi thí sinh phải có kiến thức sâu rộng, kỹ năng giải quyết vấn đề tốt và khả năng tư duy sáng tạo. Đề thi này là một tài liệu tham khảo hữu ích cho các em học sinh đang chuẩn bị cho kỳ thi học sinh giỏi Quốc gia môn Toán.

images-post/de-chon-doi-tuyen-thi-hsg-qg-mon-toan-nam-2023-2024-so-gd-dt-lang-son-1.jpgimages-post/de-chon-doi-tuyen-thi-hsg-qg-mon-toan-nam-2023-2024-so-gd-dt-lang-son-2.jpg

File đề chọn đội tuyển thi hsg qg môn toán năm 2023 – 2024 sở gd&đt lạng sơn PDF Chi Tiết

Giải bài toán đề chọn đội tuyển thi hsg qg môn toán năm 2023 – 2024 sở gd&đt lạng sơn: Phương Pháp, Mẹo Học Hiệu Quả và Ví Dụ Chi Tiết

Bài toán đề chọn đội tuyển thi hsg qg môn toán năm 2023 – 2024 sở gd&đt lạng sơn là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.

1. Tầm Quan Trọng Của Việc Giải Bài Toán đề chọn đội tuyển thi hsg qg môn toán năm 2023 – 2024 sở gd&đt lạng sơn

Bài toán đề chọn đội tuyển thi hsg qg môn toán năm 2023 – 2024 sở gd&đt lạng sơn thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.

  • Rèn luyện tư duy logic: Việc giải các bài toán thuộc dạng này giúp bạn phát triển khả năng tư duy phân tích, nhận biết mối quan hệ giữa các yếu tố trong bài toán.
  • Củng cố kiến thức: Qua quá trình luyện tập, bạn sẽ hiểu sâu hơn về các công thức, định lý, và phương pháp áp dụng.
  • Chuẩn bị cho kỳ thi: Việc làm quen với dạng bài này sẽ giúp bạn tự tin hơn khi bước vào phòng thi.

2. Phương Pháp Giải Bài Toán đề chọn đội tuyển thi hsg qg môn toán năm 2023 – 2024 sở gd&đt lạng sơn

Để giải hiệu quả bài toán đề chọn đội tuyển thi hsg qg môn toán năm 2023 – 2024 sở gd&đt lạng sơn, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:

Bước 1: Hiểu Đề Bài

  • Đọc kỹ đề bài để nắm bắt yêu cầu chính xác.
  • Xác định các yếu tố đã cho và cần tìm.
  • Phân tích mối liên hệ giữa các yếu tố.

Bước 2: Lựa Chọn Phương Pháp Giải

Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:

  • Phương pháp trực tiếp: Sử dụng các công thức hoặc định lý có sẵn để giải bài.
  • Phương pháp gián tiếp: Biến đổi bài toán về một dạng quen thuộc hoặc dễ xử lý hơn.
  • Sử dụng đồ thị: Trong trường hợp bài toán liên quan đến hàm số hoặc biểu đồ.

Bước 3: Triển Khai Lời Giải

  • Áp dụng công thức và phương pháp đã chọn.
  • Trình bày các bước giải rõ ràng, logic.
  • Kiểm tra lại từng bước để đảm bảo không có sai sót.

Bước 4: Kiểm Tra Kết Quả

  • So sánh kết quả với yêu cầu đề bài.
  • Đánh giá xem lời giải có đáp ứng đầy đủ yêu cầu chưa.

3. Những Mẹo Học Hiệu Quả Khi Giải Bài Toán đề chọn đội tuyển thi hsg qg môn toán năm 2023 – 2024 sở gd&đt lạng sơn

Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:

Mẹo 1: Nắm Vững Kiến Thức Cơ Bản

Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.

Mẹo 2: Luyện Tập Thường Xuyên

Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.

Mẹo 3: Phân Tích Sai Lầm

Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.

Mẹo 4: Sử Dụng Tài Liệu Tham Khảo

Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.

4. Ví Dụ Chi Tiết Về Bài Toán đề chọn đội tuyển thi hsg qg môn toán năm 2023 – 2024 sở gd&đt lạng sơn

Ví Dụ 1: Đề Bài Cụ Thể

Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”

Lời Giải:

  • 1. Phân tích đề bài: [Chi tiết phân tích các yếu tố]
  • 2. Sử dụng phương pháp: [Phương pháp áp dụng và lý do chọn phương pháp này]
  • 3. Triển khai từng bước:
    • Bước 1: [Mô tả bước đầu tiên]
    • Bước 2: [Mô tả bước tiếp theo]

4. Kết quả cuối cùng: [Đáp án và kiểm tra lại đáp án].

Ví Dụ 2: Bài Tập Nâng Cao

Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:

  • Đề bài: “Chứng minh rằng [nội dung đề bài nâng cao].”
  • Gợi ý lời giải: [Cách tiếp cận và các bước triển khai chi tiết].

5. Tài Liệu Hỗ Trợ Học Tập

Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề chọn đội tuyển thi hsg qg môn toán năm 2023 – 2024 sở gd&đt lạng sơn, dưới đây là một số nguồn hữu ích:

  • Sách tham khảo: Các sách chuyên đề về toán học.
  • Website học toán: Những trang web uy tín cung cấp bài tập và lời giải chi tiết.
  • Video bài giảng: Các kênh YouTube hoặc khóa học trực tuyến giúp bạn hiểu sâu hơn về phương pháp giải.

6. Lời Khuyên Từ Chuyên Gia

Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.

7. Kết Luận

Bài toán đề chọn đội tuyển thi hsg qg môn toán năm 2023 – 2024 sở gd&đt lạng sơn là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.

Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!

>> Xem thêm đáp án chi tiết về: đề chọn đội tuyển thi hsg qg môn toán năm 2023 – 2024 sở gd&đt lạng sơn.

Icon Shopee