Tài liệu gồm 287 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề vectơ trong chương trình SGK Toán 10 Kết Nối Tri Thức Với Cuộc Sống (KNTTvCS), có đáp án và lời giải chi tiết.
Bài 7. Các khái niệm mở đầu.
1. Lý thuyết.
2. Bài tập sách giáo khoa.
3. Hệ thống bài tập tự luận.
Dạng 1. Xác định một vectơ; phương, hướng của vectơ; độ dài của vectơ.
+ Xác định một vectơ và xác sự cùng phương, cùng hướng của hai vectơ theo nghĩa.
+ Dựa vào các tình chất hình học của các hình đã cho biết để tính độ dài của một vectơ.
Dạng 2. Chứng minh hai vectơ bằng nhau.
+ Để chứng minh hai vectơ bằng nhau ta chứng minh chúng có cùng độ dài và cùng hướng hoặc dựa vào nhận xét nếu tứ giác ABCD là hình bình hành thì AB = DC hoặc AD = BC.
Dạng 3. Xác định điểm thoả đẳng thức vectơ.
+ Sử dụng: Hai véctơ bằng nhau khi và chỉ khi chúng cùng độ dài và cùng hướng.
4. Hệ thống bài tập trắc nghiệm.
Bài 8. Tổng và hiệu hai vectơ.
1. Lý thuyết.
2. Ví dụ minh họa.
3. Bài tập sách giáo khoa.
4. Hệ thống bài tập.
Dạng 1. Các bài toán liên quan đến tổng các vectơ.
Dạng 2. Vectơ đối, hiệu của hai vectơ.
Dạng 3. Chứng minh đẳng thức vectơ.
Dạng 4. Các bài toán xác định điểm thỏa đẳng thức vectơ.
Dạng 5. Các bài toán tính độ dài của vectơ.
Bài 9. Tích của vectơ với một số.
1. Lý thuyết.
2. Ví dụ minh họa.
3. Bài tập sách giáo khoa.
4. Hệ thống bài tập.
Dạng 1. Xác định vectơ ka.
Dạng 2. Hai vectơ cùng phương, ba điểm thẳng hàng.
Dạng 3. Biểu thị một vectơ theo hai vectơ không cùng phương.
Dạng 4. Đẳng thức vectơ chứa tích của vectơ với một số.
Bài 10. Vectơ trong mặt phẳng tọa độ.
1. Lý thuyết.
2. Ví dụ minh họa.
3. Bài tập sách giáo khoa.
4. Hệ thống bài tập.
Dạng 1. Tìm tọa độ điểm, tọa độ vectơ trên mặt phẳng Oxy.
Dạng 2. Xác định tọa độ điểm, vectơ liên quan đến biểu thức dạng u + v, u – v, ku.
Dạng 3. Xác định tọa độ các điểm của một hình.
Dạng 4. Bài toán liên quan đến sự cùng phương của hai vectơ. Phân tích một vectơ qua hai vectơ không cùng phương.
Bài 11. Tích vô hướng của hai vectơ.
1. Lý thuyết.
2. Bài tập sách giáo khoa.
3. Hệ thống bài tập.
Dạng 1. Xác định góc giữa hai vectơ.
+ Sử dụng nghĩa góc giữa hai vectơ.
+ Sử dụng tính chất của tam giác, hình vuông.
Dạng 2. Tích vô hướng của hai vectơ.
+ Dựa vào nghĩa a.b = |a|.|B|.cos(a;b).
+ Sử dụng tính chất và các hằng đẳng thức của tích vô hướng của hai vectơ.
Dạng 3. Chứng minh các đẳng thức về tích vô hướng hoặc độ dài.
+ Nếu trong đẳng thức chứa bình phương độ dài của đoạn thẳng thì ta chuyển về vectơ nhờ đẳng thức AB2 = AB2.
+ Sử dụng các tính chất của tích vô hướng, các quy tắc phép toán vectơ.
+ Sử dụng hằng đẳng thức vectơ về tích vô hướng.
Dạng 4. Điều kiện vuông góc.
+ Cho a = (x1;y1) và b = (x2;y2). Khi đó a vuông góc b khi và chỉ khi a.b = 0 khi và chỉ khi x1.x2 + y1.y2 = 0.
Dạng 5. Các bài toán tìm tập hợp điểm.
+ Ta sử dụng các kết quả cơ bản sau: Cho A, B là các điểm cố định và M là điểm di động:
+ + Nếu |AM| = k với k là số thực dương cho trước thì tập hợp các điểm M là đường tròn tâm A, bán kính R = k.
+ + Nếu MA.MB = 0 thì tập hợp các điểm M là đường tròn đường kính AB.
+ + Nếu MA.a = 0 với a khác 0 cho trước thì tập hợp các điểm M là đường thẳng đi qua A và vuông góc với giá của vectơ a.
Dạng 6. Cực trị.
+ Sử dụng kiến thức tổng hợp để giải toán.
4. Hệ thống bài tập trắc nghiệm.
Dạng 1. Tích vô hướng.
Dạng 2. Xác đnnh góc của hai véctơ.
Dạng 3. Ứng dụng tích vô hướng chứng minh vuông góc.
Dạng 4. Một số bài toán liên quan đến độ dài véctơ.
Bài toán chuyên đề vectơ toán 10 kết nối tri thức với cuộc sống là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán chuyên đề vectơ toán 10 kết nối tri thức với cuộc sống thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán chuyên đề vectơ toán 10 kết nối tri thức với cuộc sống, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán chuyên đề vectơ toán 10 kết nối tri thức với cuộc sống, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán chuyên đề vectơ toán 10 kết nối tri thức với cuộc sống là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: chuyên đề vectơ toán 10 kết nối tri thức với cuộc sống.