Logo Header
  1. Môn Toán
  2. chuyên đề mặt tròn xoay, mặt nón – trụ – cầu – đặng việt đông

chuyên đề mặt tròn xoay, mặt nón – trụ – cầu – đặng việt đông

Tài liệu gồm 64 trang tóm tắt lý thuyết cơ bản và tuyển chọn các bài toán chuyên đề mặt tròn xoay, mặt nón – trụ – cầu có lời giải chi tiết.

I. HÌNH NÓN – KHỐI NÓN

1. Mặt nón tròn xoay


+ Trong mặt phẳng (P), cho 2 đường thẳng d, Δ cắt nhau tại O và chúng tạo thành góc β với 0 < β < 90 độ. Khi quay mp(P) xung quanh trục Δ với góc β không thay đổi được gọi là mặt nón tròn xoay đỉnh O.

+ Người ta thường gọi tắt mặt nón tròn xoay là mặt nón. Đường thẳng Δ gọi là trục, đường thẳng d được gọi là đường sinh và góc 2β gọi là góc ở đỉnh.

2. Hình nón tròn xoay

+ Cho ΔOIM vuông tại I quay quanh cạnh góc vuông OI thì đường gấp khúc OIM tạo thành một hình, gọi là hình nón tròn xoay (gọi tắt là hình nón).

+ Đường thẳng OI gọi là trục, O là đỉnh, OI gọi là đường cao và OM gọi là đường sinh của hình nón.

+ Hình tròn tâm I, bán kính r = IM là đáy của hình nón.

3. Công thức diện tích và thể tích của hình nón

Cho hình nón có chiều cao là h, bán kính đáy r và đường sinh là l thì có:

+ Diện tích xung quanh: Sxq=π.r.l

+ Diện tích đáy (hình tròn): Str=π.r^2

+ Diện tích toàn phần hình tròn: S = Str + Sxq

+ Thể tích khối nón: Vnón = 1/3.Str.h = 1/3π.r^2.h

4. Tính chất:

Nếu cắt mặt nón tròn xoay bởi mặt phẳng đi qua đỉnh thì có các trường hợp sau xảy ra:

+ Mặt phẳng cắt mặt nón theo 2 đường sinh → Thiết diện là tam giác cân

+ Mặt phẳng tiếp xúc với mặt nón theo một đường sinh. Trong trường hợp này, người ta gọi đó là mặt phẳng tiếp diện của mặt nón.

Nếu cắt mặt nón tròn xoay bởi mặt phẳng không đi qua đỉnh thì có các trường hợp sau xảy ra:

+ Nếu mặt phẳng cắt vuông góc với trục hình nón → giao tuyến là một đường tròn.

+ Nếu mặt phẳng cắt song song với 2 đường sinh hình nón → giao tuyến là 2 nhánh của 1 hypebol.

+ Nếu mặt phẳng cắt song song với 1 đường sinh hình nón → giao tuyến là 1 đường parabol.

[ads]

II. HÌNH TRỤ – KHỐI TRỤ

1. Mặt trụ tròn xoay

+ Trong mp(P) cho hai đường thẳng Δ và l song song nhau, cách nhau một khoảng r. Khi quay mp(P) quanh trục cố định Δ thì đường thẳng l sinh ra một mặt tròn xoay được gọi là mặt trụ tròn

xoay hay gọi tắt là mặt trụ.

+ Đường thẳng Δ được gọi là trục.

+ Đường thẳng l được gọi là đường sinh.

+ Khoảng cách r được gọi là bán kính của mặt trụ.

2. Hình trụ tròn xoay

Khi quay hình chữ nhật ABCD xung quanh đường thẳng chứa một cạnh, chẳng hạn cạnh AB thì đường gấp khúcABCD tạo thành một hình, hình đó được gọi là hình trụ tròn xoay hay gọi tắt là hình trụ.

+ Đường thẳng AB được gọi là trục.

+ Đoạn thẳng CD được gọi là đường sinh.

+ Độ dài đoạn thẳng AB = CD = h được gọi là chiều cao của hình trụ.

+ Hình tròn tâm A, bán kính r = AD và hình tròn tâm B, bán kính r = BC được gọi là 2 đáy của hình trụ.

+ Khối trụ tròn xoay, gọi tắt là khối trụ, là phần không gian giới hạn bởi hình trụ tròn xoay kể cả hình trụ.

3. Công thức tính diện tích và thể tích của hình trụ

Cho hình trụ có chiều cao là h và bán kính đáy bằng r, khi đó:

+ Diện tích xung quanh của hình trụ: Sxq = 2πrh

+ Diện tích toàn phần của hình trụ: Stp=Sxq+Sđ=2πrh+2πr2

+ Thể tích khối trụ: V = Bh = πr^2h

4. Tính chất

+ Nếu cắt mặt trụ tròn xoay (có bán kính là r) bởi một mp(α) vuông góc với trục Δ thì ta được đường tròn có tâm trên Δ và có bán kính bằng r với r cũng chính là bán kính của mặt trụ đó.

+ Nếu cắt mặt trụ tròn xoay (có bán kính là r) bởi một mp(α) không vuông góc với trục Δ nhưng cắt tất cả các đường sinh, ta được giao tuyến là một đường elíp có trụ nhỏ bằng 2r và trục lớn bằng 2r/sinα trong đó φ là góc giữa trục Δ và mp(α) với 0 < φ < 90 độ.

Cho mp(α) song song với trục Δ của mặt trụ tròn xoay và cách Δ một khoảng k.

+ Nếu k < r thì mp(α) cắt mặt trụ theo hai đường sinh → thiết diện là hình chữ nhật.

+ Nếu k = r thì mp(α) tiếp xúc với mặt trụ theo một đường sinh.

+ Nếu k /> r thì mp(α) không cắt mặt trụ.

III. MẶT CẦU – KHỐI CẦU

1. Vị trí tương đối giữa mặt cầu và mặt phẳng

Cho mặt cầu S(O; R) và mặt phẳng (P). Gọi d = d(O; (P)).

+ Nếu d < R thì (P) cắt (S) theo giao tuyến là đường tròn nằm trên (P), có tâm H và bán kính.

+ Nếu d = R thì (P) tiếp xúc với (S) tại tiếp điểm H. ((P) được gọi là tiếp diện của (S)).

+ Nếu d /> R thì (P) và (S) không có điểm chung.

Khi d = 0 thì (P) đi qua tâm O và được gọi là mặt phẳng kính, đường tròn giao tuyến có bán kính bằng R được gọi là đường tròn lớn.

2. Vị trí tương đối giữa mặt cầu và đường thẳng

Cho mặt cầu S(O; R) và đường thẳng Δ. Gọi d = d(O; Δ).

+ Nếu d < R thì Δ cắt (S) tại hai điểm phân biệt.

+ Nếu d = R thì Δ tiếp xúc với (S). (được gọi là tiếp tuyến của (S)).

+ Nếu d /> R thì Δ và (S) không có điểm chung.

3. Xác định tâm mặt cầu ngoại tiếp khối đa diện

a. Mặt cầu ngoại tiếp hình chóp

+ Cách 1: Nếu (n – 2) đỉnh của đa diện nhìn hai đỉnh còn lại dưới một góc vuông thì tâm của mặt cầu là trung điểm của đoạn thẳng nối hai đỉnh đó.

+ Cách 2: Để xác định tâm của mặt cầu ngoại tiếp hình chóp.

– Xác định trục Δ của đáy (Δ là đường thẳng vuông góc với đáy tại tâm đường tròn ngoại tiếp đa giác đáy).

– Xác định mặt phẳng trung trực (P) của một cạnh bên.

– Giao điểm của (P) và Δ là tâm của mặt cầu ngoại tiếp hình chóp.

b. Mặt cầu ngoại tiếp hình lăng trụ đứng

– Xác định trục Δ của hai đáy (Δ là đường thẳng vuông góc với đáy tại tâm đường tròn ngoại tiếp đa giác đáy).

– Trung điểm đoạn nối hai tâm đa giác đáy là tâm của mặt cầu ngoại tiếp hình chóp

images-post/chuyen-de-mat-tron-xoay-mat-non-tru-cau-dang-viet-dong-01.jpgimages-post/chuyen-de-mat-tron-xoay-mat-non-tru-cau-dang-viet-dong-02.jpgimages-post/chuyen-de-mat-tron-xoay-mat-non-tru-cau-dang-viet-dong-03.jpgimages-post/chuyen-de-mat-tron-xoay-mat-non-tru-cau-dang-viet-dong-04.jpgimages-post/chuyen-de-mat-tron-xoay-mat-non-tru-cau-dang-viet-dong-05.jpgimages-post/chuyen-de-mat-tron-xoay-mat-non-tru-cau-dang-viet-dong-06.jpgimages-post/chuyen-de-mat-tron-xoay-mat-non-tru-cau-dang-viet-dong-07.jpgimages-post/chuyen-de-mat-tron-xoay-mat-non-tru-cau-dang-viet-dong-08.jpgimages-post/chuyen-de-mat-tron-xoay-mat-non-tru-cau-dang-viet-dong-09.jpgimages-post/chuyen-de-mat-tron-xoay-mat-non-tru-cau-dang-viet-dong-10.jpg

File chuyên đề mặt tròn xoay, mặt nón – trụ – cầu – đặng việt đông PDF Chi Tiết

Giải bài toán chuyên đề mặt tròn xoay, mặt nón – trụ – cầu – đặng việt đông: Phương Pháp, Mẹo Học Hiệu Quả và Ví Dụ Chi Tiết

Bài toán chuyên đề mặt tròn xoay, mặt nón – trụ – cầu – đặng việt đông là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.

1. Tầm Quan Trọng Của Việc Giải Bài Toán chuyên đề mặt tròn xoay, mặt nón – trụ – cầu – đặng việt đông

Bài toán chuyên đề mặt tròn xoay, mặt nón – trụ – cầu – đặng việt đông thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.

  • Rèn luyện tư duy logic: Việc giải các bài toán thuộc dạng này giúp bạn phát triển khả năng tư duy phân tích, nhận biết mối quan hệ giữa các yếu tố trong bài toán.
  • Củng cố kiến thức: Qua quá trình luyện tập, bạn sẽ hiểu sâu hơn về các công thức, định lý, và phương pháp áp dụng.
  • Chuẩn bị cho kỳ thi: Việc làm quen với dạng bài này sẽ giúp bạn tự tin hơn khi bước vào phòng thi.

2. Phương Pháp Giải Bài Toán chuyên đề mặt tròn xoay, mặt nón – trụ – cầu – đặng việt đông

Để giải hiệu quả bài toán chuyên đề mặt tròn xoay, mặt nón – trụ – cầu – đặng việt đông, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:

Bước 1: Hiểu Đề Bài

  • Đọc kỹ đề bài để nắm bắt yêu cầu chính xác.
  • Xác định các yếu tố đã cho và cần tìm.
  • Phân tích mối liên hệ giữa các yếu tố.

Bước 2: Lựa Chọn Phương Pháp Giải

Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:

  • Phương pháp trực tiếp: Sử dụng các công thức hoặc định lý có sẵn để giải bài.
  • Phương pháp gián tiếp: Biến đổi bài toán về một dạng quen thuộc hoặc dễ xử lý hơn.
  • Sử dụng đồ thị: Trong trường hợp bài toán liên quan đến hàm số hoặc biểu đồ.

Bước 3: Triển Khai Lời Giải

  • Áp dụng công thức và phương pháp đã chọn.
  • Trình bày các bước giải rõ ràng, logic.
  • Kiểm tra lại từng bước để đảm bảo không có sai sót.

Bước 4: Kiểm Tra Kết Quả

  • So sánh kết quả với yêu cầu đề bài.
  • Đánh giá xem lời giải có đáp ứng đầy đủ yêu cầu chưa.

3. Những Mẹo Học Hiệu Quả Khi Giải Bài Toán chuyên đề mặt tròn xoay, mặt nón – trụ – cầu – đặng việt đông

Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:

Mẹo 1: Nắm Vững Kiến Thức Cơ Bản

Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.

Mẹo 2: Luyện Tập Thường Xuyên

Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.

Mẹo 3: Phân Tích Sai Lầm

Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.

Mẹo 4: Sử Dụng Tài Liệu Tham Khảo

Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.

4. Ví Dụ Chi Tiết Về Bài Toán chuyên đề mặt tròn xoay, mặt nón – trụ – cầu – đặng việt đông

Ví Dụ 1: Đề Bài Cụ Thể

Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”

Lời Giải:

  • 1. Phân tích đề bài: [Chi tiết phân tích các yếu tố]
  • 2. Sử dụng phương pháp: [Phương pháp áp dụng và lý do chọn phương pháp này]
  • 3. Triển khai từng bước:
    • Bước 1: [Mô tả bước đầu tiên]
    • Bước 2: [Mô tả bước tiếp theo]

4. Kết quả cuối cùng: [Đáp án và kiểm tra lại đáp án].

Ví Dụ 2: Bài Tập Nâng Cao

Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:

  • Đề bài: “Chứng minh rằng [nội dung đề bài nâng cao].”
  • Gợi ý lời giải: [Cách tiếp cận và các bước triển khai chi tiết].

5. Tài Liệu Hỗ Trợ Học Tập

Nếu bạn cần thêm tài liệu tham khảo để giải bài toán chuyên đề mặt tròn xoay, mặt nón – trụ – cầu – đặng việt đông, dưới đây là một số nguồn hữu ích:

  • Sách tham khảo: Các sách chuyên đề về toán học.
  • Website học toán: Những trang web uy tín cung cấp bài tập và lời giải chi tiết.
  • Video bài giảng: Các kênh YouTube hoặc khóa học trực tuyến giúp bạn hiểu sâu hơn về phương pháp giải.

6. Lời Khuyên Từ Chuyên Gia

Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.

7. Kết Luận

Bài toán chuyên đề mặt tròn xoay, mặt nón – trụ – cầu – đặng việt đông là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.

Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!

>> Xem thêm đáp án chi tiết về: chuyên đề mặt tròn xoay, mặt nón – trụ – cầu – đặng việt đông.